

2 CROSSTALK The Journal of Defense Software Engineering February 2006

DoDAF-Based Information Assurance Architectures
This article discusses how to leverage the mandated Department of
Defense Architecture Framework (DoDAF) architectures for the basis
of information assurance architecture rather than undertake a costly
independent information assurance effort.
by Dr. John A. Hamilton Jr.

Applying RAMS Principles to the Development of a
Safety-Critical Java Specification
This article evaluates the benefits of a proposed specification for
safety-critical Java in terms of reliable, available, maintainable, and safe
(RAMS) principles over alternative approaches based on C, C++,
traditional Java, or Real-Time Specification for Java.
by Dr. Kelvin Nilsen

A Governance Model for Incremental, Concurrent,
or Agile Projects
Use the model in this article to track projects by reporting on
different team strategies in the same format and by creating a
spreadsheet of estimates and plans that is easily updated using
automated tools.
by Dr. Alistair Cockburn

Project Estimation With Use Case Points
This article provides an introduction to the Use Case Points method
that employs a project’s use cases to produce a reasonable estimate of
a project’s complexity and required man-hours.
by Roy K. Clemmons

Software Estimating Models:Three Viewpoints
This article compares the approach taken by three widely used models
for software cost and schedule estimation. Each of the models is
compared to a common framework of first-, second-, and third-order
models to maintain consistency in the comparisons. The comparisons
illustrate significant differences between the models, and show significant
differences in the approaches used by each of the model classes.
by Dr. Randall W. Jensen, Lawrence H. Putnam Sr., and William Roetzheim

4

8

13

18

23

****** ******

Cover Design by
Kent Bingham

3

7

22

29

30

31

DeparDepar tmentstments

ON THE COVER

AA NeNeww TTwistwist onon TTodaoday’y’ss TTechnoloechnologgyy

SoftwarSoftwaree EngineeringEngineering TTechnoloechnologgyy

CrossTalk
76 SMXG

CO-SPONSOR

309 SMXG
CO-SPONSOR

402 SMXG
CO-SPONSOR

DHS
CO-SPONSOR

NAVAIR
CO-SPONSOR

PUBLISHER

ASSOCIATE PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE COORDINATOR

PHONE

E-MAIL

CROSSTALK ONLINE

Kevin Stamey

Randy Hill

Bob Zwitch

Joe Jarzombek

Jeff Schwalb

Tracy Stauder

Elizabeth Starrett

Pamela Palmer

Chelene Fortier-Lozancich

Nicole Kentta

(801) 775-5555

crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

CrossTalk,The Journal of Defense Software
Engineering is co-sponsored by the U.S. Air Force
(USAF), the U.S. Department of Homeland Security
(DHS), and the U.S. Navy (USN). USAF co-sponsors:
Oklahoma City-Air Logistics Center (ALC) 76
Software Maintenance Group (SMXG), Ogden-ALC
309 SMXG, and Warner Robins-ALC 402 SMXG.
DHS co-sponsor: National Cyber Security Division of
the Office of Infrastructure Protection. USN co-spon-
sor: Naval Air Systems Command (NAVAIR) Soft-
ware Systems Support Center.

The USAF Software Technology Support
Center (STSC) is the publisher of CrossTalk,
providing both editorial oversight and technical review
of the journal.CrossTalk’s mission is to encourage
the engineering development of software to improve
the reliability, sustainability, and responsiveness of our
warfighting capability.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 22.

309 SMXG/MXDB
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community.Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Articles
published in CROSSTALK remain the property of the
authors and may be submitted to other publications.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD. Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, or the STSC. All
product names referenced in this issue are trademarks
of their companies.

Coming Events: Please submit conferences, seminars,
symposiums, etc. that are of interest to our readers at
least 90 days before registration. Mail or e-mail
announcements to us.

CrossTalk Online Services: See <www.stsc.hill.af.mil/
crosstalk>, call (801) 777-0857 or e-mail <stsc.
webmaster@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

From the Sponsor
From the Publisher

Coming Events
Web Sites

More Online From CrossTalk

Letter to the Editor

SSTC Conference Registration

BackTalk

Additional art services
provided by Janna Jensen.
jensendesigns@aol.com

February 2006 www.stsc.hill.af.mil 3

From the Sponsor

If you have listened to a speech or presentation from our Department of Defense (DoD)
leadership, then you have certainly heard the terms net-centric architecture and global

information grid. The net-centric concepts are a key to the strategic vision for increasing
our joint forces’ capability. In an issue dedicated to “A New Twist on Today’s Technology,”
it is important to consider our technology trends in the context of our warfighter’s need-
ed capability. The need for ubiquitous information and increased dependence on joint and
allied cooperation should be a primary driving force of our technology innovations. The

DoD vision will require more robust security, accurate/current data, reliable data transmission,
improved wireless bandwidths, and overcoming other unforeseen technical challenges.

As you read this month’s articles and consider your company’s developments, think about
how you are going to leverage information and global networks to give our warfighters the
advantage.

What Is Up and Coming

Kevin Stamey
Oklahoma City Air Logistics Center, Co-Sponsor

From the Publisher

Many ideas to better our lives are not original inventions, but alterations of existing
technology to create a new use. One example is the disposable cell phone with

calling card capabilities. Customers buy the disposable cell phone with pre-set time on
it, and then when the time has expired, dispose of it, recharge it for more time, or return
it for a partial refund. The only thing new with this idea is the way existing technologies
are leveraged for a new use. CrossTalk’s February theme authors focus on this strat-
egy as they discuss new ways to take advantage of today’s technologies.

We start this month with Dr. John A. Hamilton Jr.’s article, DoDAF-Based Information
Assurance Architectures. The Department of Defense Architecture Framework (DoDAF) is not
new, but the idea to leverage the DoDAF to develop information assurance architecture to
enhance security is. Next, Dr. Kelvin Nilsen discusses a new specification for the Java pro-
gramming language that will include safety-critical requirements in Applying RAMS Principles to
the Development of a Safety-Critical Java Specification. Faced with the daunting tasks of illustrating the
status of multiple programs with differing development schemes, Dr. Alistair Cockburn sug-
gests a new way of combining information to provide this overall picture in A Governance Model
for Incremental, Concurrent, or Agile Projects. In Project Estimation With Use Case Points, Roy K.
Clemmons discusses how use cases can be used as more than just requirements documentation
and also help with the estimation process. In our final online theme article, Hard Skills
Simulations: Tackling Defense Training Challenges Through Interactive 3D Solutions, Josie Simpson sug-
gests using computer simulations to augment hands-on training.

In our supporting article, three prominent members of the software estimation community
discuss the similarities and differences of three popular software estimation models in Software
Estimating Models: Three Viewpoints.

The CrossTalk staff is constantly considering improvements in the way we provide
information to our readers. The latest twist we are attempting is Really Simple Syndication (RSS)
that will provide our online readers with an avenue to easily review the latest topics that have
been published in each month’s issue of CrossTalk. Look for the RSS icon on our Web site
soon.

Improving a Little at a Time

Elizabeth Starrett
Associate Publisher

4 CROSSTALK The Journal of Defense Software Engineering February 2006

Alogical extension of the Department
of Defense (DoD) Architecture

Framework (DoDAF) is to specify and
describe information assurance architec-
ture. Such architecture, while primarily built
on the DoDAF systems views (SVs), can
also be supported by technical standards
views and validated by operational views
(OVs). Defense software engineers need to
be aware of the DoDAF, the mandated sys-
tem architecture in the Defense Acqui-
sition System [1].

The information assurance architecture
diagrams are primarily derived from the sys-
tem architecture. At the Department of
Computer Science and Software Engineer-
ing at Auburn University, we use low-level
architecture work products to document the
major security components and the applica-
tion mechanisms and their interrelation-
ships. Successful information assurance
strategies require holistic solutions, i.e.,
architectures are valid and internally consis-
tent, so it is logical to leverage the mandat-
ed DoDAF architectures for the basis of
information assurance architecture.

We look at information assurance archi-
tecture to support network analysis and
design to mitigate distributed denial-of-ser-
vice attacks on bandwidth. We document

open ports and required services to sup-
port a systematic software vulnerability
analysis. Finally, we use the OVs to perform
a requirements analysis to validate our
architecture. We translate operational
requirements into a modified, but DoDAF-
compliant Systems Interface Description

(SV-1) product and a Systems Communi-
cations Description (SV-2) product. We
then use those products as a basis for con-
structing the rest of the information assur-
ance architecture.

We then validate the information assur-
ance architecture against the system

requirements and verify it against security
regulations and instructions. This article
will describe how to construct DoDAF-
compliant information assurance architec-
ture based on the research efforts of
Auburn University and the practical appli-
cation of that research.

Overview of the DoDAF
This author is somewhat skeptical of man-
dates in general [2]. However, the require-
ment for DoDAF architecture is mandated
by both the Defense Acquisition System
and several chairmen. Joint Chiefs of Staff
instructions, most notably the Joint
Capabilities Integration and Development
System [3], make it seem likely that the
DoD soon will have a critical mass of
DoDAF-compliant architectures. It makes
sense to leverage those architectures
beyond satisfying acquisition requirements.

The mandatory use of the DoDAF is
prescribed in DoD Instruction 5000.2, in
which the Joint Staff is the assigned pro-
ponent for OVs, while the under secretary
of defense (Acquisition, Technology, and
Logistics), leads the development of the
SVs in collaboration with the services,
agencies, and combatant commanders [1].
Volumes I and II of the DoDAF, plus the
DoDAF Deskbook, total more than 1,500
pages of documentation; the description
that follows is necessarily abbreviated.

As defined in the DoDAF [4], an OV is
“a description of the tasks and activities,
operational elements, and information
exchange required to accomplish DoD
missions.” An SV is “a set of graphical and
textual products that describes systems and
interconnections providing for, or support-
ing, DoD functions. The SV associates sys-
tems resources to OV.” These relationships
are outlined in Figure 1.

Further discussion of these three views
is available online in “Modeling Command
and Control Interoperability: Cutting the

DoDAF-Based Information Assurance Architectures

Dr. John A. Hamilton Jr.
Auburn University

The Department of Defense (DoD) Architecture Framework (DoDAF) is the prescribed means for documenting informa-
tion systems in the DoD and is an integral part of the Joint Capabilities Integration and Development System. The inclu-
sion of DoDAF architectures in new system development is mandated in DoD acquisition regulations and is resource-inten-
sive. Deriving information assurance architecture from DoDAF-compliant architecture is a relevant way to leverage the
mandatory investment in DoDAF architectures. Every software engineer supporting the DoD should be aware of the increas-
ing importance of information assurance and the need for holistic approaches to security. Information assurance architectures
described in this article offer a verifiable holistic approach to security.

A New Twist on Today’s Technology

Operational

View

Identifies What Needs to Be

Accomplished and Who Does It

Systems

View

Relates Systems and Characteristics

to Operational Needs

Technical

Standards View

Figure 1: Relationship Between the DoDAF Views

External
D

Prescribes Standards

and Conventions

Technical Standards

View

• Operational Requirements
and Capabilities

• Technical Standards Criteria
 Governing Interoperable
 Implementation/Procurement
of the Selected System Capabilities• Specific System Capabilities

 Required to Satisfy
Information Exchanges

• What Needs to Be Done
• Who Does It
• Information Exchanges
Required to Get It Done

• Systems that Support
the Activities and
Infomation Exchanges

• Specific System Capabilities
 Required to Satisfy
Information Exchanges

• Basic Technology
 Supportability

• New Technical
 Capabilities

Figure 1: Relationship Between the DoDAF View

“A simple and effective
rule for security design is

the principle of least
privilege.That is, allow

only the minimum
essential connectivity
and functionality.”

DoDAF-Based Information Assurance Architectures

February 2006 www.stsc.hill.af.mil 5

Gordian Knot” [5].
The technical standards view is essen-

tially a listing of standards implemented by
the systems in the architecture, and is now
based on the DoD Information Technol-
ogy Standards Registry found at
<https://disronline.disa.mil>. Each com-
munications system/network-enabled com-
puter system defined in the SV will have
an entry in the technical standards view
outlining each standard used in the sys-
tem.

The intellectual power of the DoDAF
comes in the relationship between the OV
and SVs. A tactical organization chart may
be thought of as the starting point for an
OV while a network connectivity diagram
may be thought of as the starting point
for an SV.

Simplistically, the OVs and SVs estab-
lish what systems must connect, and the SVs
and technical standards view establish how
systems must connect. From an engineer-
ing perspective, OVs are representations of
requirements. The SVs describe how those
requirements are implemented. DoDAF-
compliant architectures constructed with
this symmetry in mind have traceability
between systems and requirements.

We exploit this traceability by consider-
ing the relationship of security policy to
validating information assurance architec-
ture. A simple and effective rule for securi-
ty design is the principle of least privilege.
That is, allow only the minimum essential
connectivity and functionality. This is a
principle easier to enunciate than it is to
implement. Detailed requirements are
needed to answer the question, “What is
the minimum required functionality and
connectivity?” From an information assur-
ance perspective, security policy translates
operational requirements into system
requirements. This, then, is the basis of the
methodology to develop information
assurance architecture from DoDAF-com-
pliant architecture.

Developing Information
Assurance Architecture
What are the security requirements for the
system(s) of interest? Our starting point is
a set of OVs, specifically the OV-2 – the
Operational Node Connectivity Descrip-
tion [6]. The DoDAF Deskbook [7] gives a
high-level example of showing security
attributes to a node as shown in Figure 2.
Our methodology goes into more detail.

We start with the OV-2 Operational
Node Connectivity Description. These
nodes are the entities that are represented
in the architecture. An object-oriented
modeler would consider these nodes to be

actors. An operational planner would con-
sider these nodes to be a tactical element.
These nodes can be represented at various
levels of detail. A brigade combat team
could be represented as one node, as a col-
lection of battalion nodes, as an even larg-
er number of company nodes, or quite
probably a collection of nodes at different
levels of abstraction.

For information assurance architecture,
it is necessary to list every single system. A
99 percent solution is not effective! So, the
cardinality may vary; that is, one node may
represent one system, or one node may
represent many systems. In our example,
we use one-to-one mapping because it is
easier. However, it is quite feasible, for
example, to represent a network operations
center as a single node and then have mul-
tiple system nodes that are part of the
operations center node.

Consider the OV-2 Operational Node
Connectivity Description of our Infor-
mation Assurance Laboratory as shown in
Figure 3.

Here we have gone beyond the mini-
mal DoDAF standard and provided some
additional information on what each node
does. We then look at activities that each
node is required to perform. The OV-5
Operational Activity Model [6] captures
the required activities for each node. Now,
it is a standard practice to go from the
OVs to construct the SVs in new acquisi-
tions. (In constructing as-is architecture, i.e.,
documenting existing systems, it is com-
mon to construct the SVs first.) To con-
struct useful information assurance archi-
tecture, it is necessary to drill down to a
greater level of detail. To achieve this, we
base the security policy on the OVs. It

could be argued that, in lieu of a separate
security policy, the policy requirements be
enumerated in an OV-6A Operational
Rules Model [6] – we merely call it out
separately from a DoDAF product for use
as an operational security policy.

The construction of the security poli-
cy is oriented to the OV-2 and OV-5. For
example, to allow file transfer protocol
(FTP) access, we determine which nodes
require activities that need FTP as
opposed to some other, more secure
transfer protocol. DoDAF traceability
requires a consistent numbering policy.
Our security policy representation is
numerically indexed to the nodes and
activities in the OVs. Since it is a DoDAF
requirement that each system in the SVs
(specifically the SV-1) be tied to a node in
the OV-2, we now have a security cross-
walk between the OVs (requirements) and
the SVs (implementation).

Finally, for each system in SV-1, we list

Figure 1: Relationship Between the DoDAF Views

Figure 2: DoDAF Deskbook Example of OV-2 With Security Attributes

External
Destination L

Confidentiality
Integrity

Needline 3
Information Type W

Performs:
Activity 2
Activity 3

Needline 2
Information Type Y

Needline 1
Information Type X

Node
B

Node
A

Node
C

Needline 4
Information Type Z

Performs:
Activity 1
Activity 2

Performs:
Activity 3

External
Source M

Figure 2: DoDAF Deskbook Example of OV-2 With Security Attributes

Figure 3: Simple OV-2 of the Auburn
Information Assurance Laboratory

HP Workstation
IP: 10.0.0.5
Free BSD Workstation

Firewall
IP: 10.0.0.1

Active
Directory

IP: 10.0.0.2

Needline 3
Print Services

Needline 2
Domain Control

Needline 1
Internet Access

HP Workstation
IP: 10.0.0.111
Windows XP
Workstation

HP Workstation
IP: 10.0.0.113
Windows XP
Workstation

Printer
IP: 10.0.0.200

A New Twist on Today’s Technology

6 CROSSTALK The Journal of Defense Software Engineering February 2006

the minimal set of required services,
processes, and open ports as shown in
Figure 4, which shows a partial SV-1
derived from the OV-2 Active Directory
Node in Figure 3. Based on the relation-
ship between the OVs, security policy, and
SVs, we now have a holistic information
assurance architecture that can be verified
on each system and validated against
requirements.

Verification and Validation of
Information Assurance
Architecture
Since the current Defense Acquisition
System mandates using the DoDAF, devel-
opers have strong motivation to demon-

strate that their architectures are valid and
internally consistent. This holistic approach
to system specification and connectivity is
greatly useful in designing, verifying, and
validating information assurance architec-
ture. This relationship is shown in Figure 5.

OVs are fully defined in Volume 2 of
the DoDAF [6]. Succinctly, OVs are repre-
sentations of requirements. Consequently,
there is a direct relationship between OVs
and SVs. Figure 5 is a variation of Knepell
and Arangno’s validation structure adapt-
ed for information assurance application
of the DoDAF [8].

An operational concept is not valid if
it cannot be supported by the systems
available in theater. So in this sense, the

SVs validate the conceptual model of the
OV as shown in Figure 5. Conversely, the
validity of systems architecture can be
evaluated against how well it supports the
requirements documented in the opera-
tional architecture.

The employment of executable archi-
tecture adds a new and needed dimension
to the verification and validation of
DoDAF-compliant information assurance
architecture. Executable architectures can
assess the validity of an operational con-
cept. While the SVs may provide the need-
ed connectivity to support the operational
concept described in the OVs, the SVs
alone do not give sufficient insight into
meeting operational performance and
capacity needs. It can be argued that
required performance can be extrapolated
from the SVs, but executable architecture
can provide a much more dynamic and
flexible means of evaluation.

From an information assurance view-
point, executable architectures can evalu-
ate network and system design in terms of
resistance and resiliency in the face of
denial-of-service attacks [9]. A thorough
discussion of executable architectures is
beyond the scope of this article, but the
heart of executable architecture is a net-
work simulation constructed from the sys-
tems detailed in the DoDAF SVs and
exercised by applying dynamic behavior
across the system connections required in
the OVs. Executable architectures are
described in detail in [5].

Central to this validation structure is
the security policy that is derived from the
OVs, enforced in the SVs, and must be
modeled in the executable architecture.

Conclusion
The DoDAF is mandated for use in the
DoD Acquisition System – compliant
architectures are a significant investment,
and it makes sense to leverage this invest-
ment rather than undertaking a costly
independent information assurance
effort. We have briefly illustrated some
specific ways to implement information
assurance architecture and how to verify
and validate such architecture.u

References
1. Department of Defense. “DoD

Instruction 5000.2.” Operation of the
Defense Acquisition System. Washing-
ton, D.C.: DoD, 12 May 2003: 2.

2. Hamilton Jr., J.A. “Why Programming
Languages Matter.” CrossTalk
Dec. 1997 <www.stsc.hill.af.mil/cross
t a lk/f rames. a sp?ur i=1997/12/
languages.asp>.

3. Department of Defense. “Chairman,

Figure 4: Partial SV-1 With Information Assurance Details (Active Directory Controller)

Figure 5: Validating a DoDAF-Based Information Assurance Architecture

A modification to Knepell and
Arangno's validation framework.

Can the
requirements
described in
the Operational
Views be
achieved through
the Systems Views?

Are the services,
processes, and
connections in the
Systems Views limited
to those required by
the Operational Views?

Conceptual

Model Validity

Operational

Validity

Implementation

Verification

Are the Systems Views
correctly represented?

Executable

Architecture

Systems

Views

Security

Policy

Operational

Views

Figure 5: Validating DoDAF-Based Information Assurance Architecture

DoDAF-Based Information Assurance Architectures

February 2006 www.stsc.hill.af.mil 7

Joint Chiefs of Staff Instruction
3170.01E.” Joint Capabilities Integra-
tion and Development System. Wash-
ington, D.C.: DoD, 11 May 2005.

4. Department of Defense. DoD Archi-
tecture Framework Vers. 1.0 Vol. I:
Definitions and Guidelines. Washing-
ton, D.C.: DoD, 9 Feb. 2004: 1-2
<www.defenselink.mil/nii/doc>.

5. Hamilton Jr., J.A. Modeling Command
and Control Interoperability: Cutting
the Gordian Knot. San Diego, CA:
SCS Press, 2004: 85-99 <www.eng.
auburn.edu/users/hamilton/security/
spawar>.

6. Department of Defense. DoD Archi-
tecture Framework Vers. 1.0 Vol. II:
Product Descriptions. Washington,
D.C.: DoD, 9 Feb. 2004 <www.
defenselink.mil/nii/doc>.

7. Department of Defense. DoD
Architecture Framework Vers. 1.0
Deskbook. Washington, D.C.: DoD, 9
Feb. 2004: 2-79 <www.defenselink.
mil/nii/doc>.

8. Knepell, P.L., and D.C. Arangno. Sim-
ulation Validation. Los Alamitos, CA:
IEEE Computer Society Press, 1993.

9. Chatam, J.W. Using Strategic Firewall
Placement to Mitigate the Effects of
Distributed Denial of Service Attacks.
Thesis. Auburn University, Aug. 2004.

About the Author

John A. “Drew”
Hamilton Jr., Ph.D., is
an associate professor of
computer science and
software engineering at
Auburn University and

director of Auburn University’s Infor-
mation Assurance Laboratory. Prior to
his retirement from the U.S. Army, he
served as the first director of the Joint
Forces Program Office and on the staff
and faculty of the U.S. Military Academy,
as well as chief of the Ada Joint
Program Office. He has a Bachelor of
Arts in journalism from Texas Tech
University, master’s degrees in systems
management from the University of
Southern California and in computer sci-
ence from Vanderbilt University, and a
doctorate in computer science from
Texas A&M University.

Auburn University
107 Dunstan Hall
Auburn, AL 36849
Phone: (334) 844-6360
Fax: (334) 844-6329
E-mail: hamilton@eng.auburn.edu

COMING EVENTS

Air Force Research
Laboratory
www.afrl.af.mil
The United States Air Force Research
Laboratory (AFRL) leads the discovery,
development, and integration of afford-
able warfighting technologies. The
AFRL is a full-spectrum laboratory of
approximately 9,500 people, responsible
for planning and executing the Air
Force’s entire science and technology
budget of nearly $1.7 billion, including
basic research, applied research, and
advanced technology development.
AFRL partners include universities and
industry with whom the AFRL invests
almost 80 percent of its budget; cus-
tomers include the Air Force major com-
mands, which operate and maintain the
Air Force’s weapon systems.

National Aeronautics
and Space Administration
www.nasa.gov
The National Aeronautics and Space
Administration (NASA) conducts its

work in four principle organizations,
called mission directorates: aeronautics,
exploration systems, science, and flight
support. Closer to home, NASA’s aero-
nautics team is working with other gov-
ernment organizations, universities, and
industry to fundamentally improve the
air transportation experience.

Practical Software and
Systems Measurement
Support Center
www.psmsc.com
The Practical Software and Systems
Measurement (PSM) Support Center is
sponsored by the Department of Defense
(DoD) and the U.S. Army. It provides
project managers with the objective
information needed to successfully meet
cost, schedule, and technical objectives
on programs. PSM is based on actual
measurement experience with DoD,
government, and industry programs.
The Web site also has the most current
version of the PSM Guidebook.

WEB SITES

March 6-9
Software Engineering Process

Group (SEPG) 2006
Nashville, TN

www.sei.cmu.edu/sepg

March 13-15
International Symposium on Secure

Software Engineering
Washington, D.C.

www.jmu.edu/iiia/issse

March 15-16
International Conference on

Information Warfare and Security
Princess Anne, MD

http://academic-conferences.
org/iciw/iciw2006/iciw06-home.htm

March 20-22
Association for Configuration and Data
Management 11th Annual Technical and

Training Conference
Sparks, NV

www.acdm.org/2006/conference.php

April 2-6
9th Communications and Networking

Simulation Symposium
Huntsville, AL

www.scs.org/confernc/springsim/
springsim06/cfp/cns06.htm

April 3-7
The 3rd International Conference on

Software Process Improvement
Orlando, FL

www.icspi.com

April 10-12
3rd International Conference on

Information Technology: New Generations
Las Vegas, NV
www.itng.info

May 1-4
2006 Systems and Software

Technology Conference

Salt Lake City, UT
www.stc-online.org

8 CROSSTALK The Journal of Defense Software Engineering February 2006

Applying RAMS Principles to the Development of a
Safety-Critical Java Specification

Almost all software for aerospace and defense applications is required to satisfy reliable, available, maintainable, and safe
(RAMS) objectives. While many RAMS issues are best addressed by requiring that software developers consistently adhere
to particular development methodologies, a development team’s selection of commercial off-the-shelf technologies, including
choice of programming language, run-time environment, and libraries, may also impact the team’s ability to satisfy RAMS
requirements. This article evaluates a proposed specification for safety-critical Java in terms of RAMS principles, comparing
the use of the draft safety-critical Java standard with traditional approaches based on C, and motivating the restrictions
imposed by the safety-critical Java specification in comparison with use of traditional Java and the general purpose Real-Time
Specification for Java. The RAMS solutions that have been designed for the proposed safety-critical Java specification apply
equally well to a breadth of defense and aerospace application domains, including hard real-time mission-critical code for com-
munication, sensing, guidance, and automation subsystems.

Dr. Kelvin Nilsen
Aonix

The Radio Technical Commission for
Aeronautics (RTCA) DO-178B guide-

lines [1] are designed to span a range of
criticality levels. The most life-critical soft-
ware components in an avionics system
are characterized as Level-A. Failure of a
Level-A software component is consid-
ered catastrophic. Without this component,
further flight and/or landing of an aircraft
is considered impossible. Failure of a
Level-C component is considered major,
reducing the ability of a crew to cope with
flight responsibilities, but not significantly
increasing the risk of a crash. The safety-
critical Java specification that is under
development is designed to span the full
range of DO-178B levels. In this regard, it
addresses both life-critical and mission-
critical systems.

Satisfying DO-178B certification
requirements involves considerable engi-
neering discipline. Enforcing this disci-
pline is the responsibility of project man-
agers and team leaders. Peer reviews are
required at every step of the development
process. Extensive documentation and
accountability audit trails are required to
ensure that no corners are cut in design,
development, and testing of the safety-
critical software. The DO-178B guidelines
are independent of programming lan-
guage choice. Regardless of programming
language, engineers are required to
address all of the same issues and gather
all of the same documentation artifacts.
You might reasonably ask, “What differ-
ence does the choice of programming lan-
guage make?”

To answer this question, it is necessary
to look more closely at some of the issues
that must be addressed by developers of
mission-critical and safety-critical systems.
This article focuses on the programming
language impact with respect to four

broad issues: reliability, availability, main-
tainability, and safety (RAMS). In dis-
cussing these issues, we draw comparisons
between using C, C++, the Real-Time
Specification for Java (RTSJ) [2], tradition-
al Java [3], and the proposed safety-critical
specification for Java [4, 5]. Even though
these issues can be addressed satisfactorily
in a number of different languages, certain
languages require less effort to address
than others.

The draft safety-critical specification
that is discussed here is currently under
consideration for submission as a Java
Community Process (JCP) standard. A
prototype implementation of this specifi-
cation is currently under development.
Based on feedback from early evaluators,
we expect to make appropriate refine-
ments to the specification before submit-
ting the final result for standardization
under the JCP. We expect submission of
the standard to take place during 2006. To
track the progress of this ongoing specifi-
cation and standardization work, refer to
<http://research.aonix.com/jsc>.

Reliability
Among key considerations of developers
focused on delivering high reliability are
the following:
• The language and run-time environ-

ment must be sufficiently simple so
they are easily understood.

• Ideally, the language and standard
libraries behave consistently across
platforms. Otherwise, programmers
are likely to overlook incompatibilities
when shifting their development
efforts or migrating software compo-
nents from one platform to the next.

• To help programmers manage com-
plexity reliably, good programming lan-
guages support abstractions that allow

programmers to separate concerns
between independent components.

• Over the years, computer scientists
have experimented with a variety of
programming language features. Some
very powerful features are easily mis-
used, with far-reaching consequences.
Certain features – such as implicit
coercion of integer to Boolean – have
been shown to be very error-prone.
Programming languages that omit
dangerous and error-prone features
make it easier for developers to build
reliable systems.
One of the main reasons Java has been

such a popular alternative to C and C++ is
because it is a much more portable pro-
gramming language. This portability has
resulted in a variety of important benefits.
First, the standard libraries behave similar-
ly across a wide variety of central proces-
sor unit (CPU) architectures and operating
systems. Second, third-party developers of
open-source and commercial off-the-shelf
Java components are able to distribute
these libraries in portable binary represen-
tations, without regard for on which plat-
form they will be used. Third, developers
of embedded systems can develop and
test their software on fast, large-memory
desktop machines, and then deploy the
completed software on much slower,
memory-limited embedded targets with-
out concern that the code will behave dif-
ferently in the embedded environment.
Fourth, the learning curve for programmers
consists only of learning the portable plat-
form. No additional effort is required to
learn the peculiarities of each implemen-
tation of the platform running on each
different real-time operating system
(RTOS).

These portability benefits are relevant
to developers of safety-critical code. The

Applying RAMS Principles to the Development of a Safety-Critical Java Specification

February 2006 www.stsc.hill.af.mil 9

relevance of these benefits to system reli-
ability is that (1) programmers are less
likely to introduce errors because they
have misunderstood or overlooked pecu-
liarities of a particular Java implementa-
tion, and (2) the ability to reuse compo-
nents across different platforms means a
typical safety-critical deployment has a
higher percentage of mature, time-proven
software components in place versus cus-
tom-tailored software components that
have never been used before.

Though the Java platform is portable
with respect to functional behavior, stan-
dard-edition Java does not provide porta-
bility with respect to real-time issues. For
example, the amount of memory allocated
to create a particular data structure may
vary significantly from one Java imple-
mentation to the next. And the scheduling
of threads is also highly platform-depen-
dent. To address these issues, the draft
safety-critical Java specification carefully
defines the precise semantics of a very
small subset of the full Java Standard
Edition libraries in combination with a
small subset of the full RTSJ.

The selection of these libraries focus-
es on providing the minimal functionality
required as a portable and extensible foun-
dation upon which to build safety-critical
systems. We annotate this set of libraries
to characterize which services must be
time- and memory-bounded, and we make
these same annotations available to appli-
cation developers so they can document
their intentions with respect to the code
they develop. A special safety-critical byte-
code verifier (static analysis tool) enforces
that method implementations are entirely
consistent with the supplied programmer
annotations. All of this clarifies which
components can be reliably used in hard
real-time contexts, including interrupt
handlers. Further, determination of the
memory and CPU time resources required
for reliable operation of hard real-time
software components is automatic.

Contrast this with the typical approach
of a C or C++ developer. Since these lan-
guages were not designed for multi-thread-
ed environments, the existing standards do
not address the code generation issues that
affect information sharing between
threads. If a particular thread modifies a
shared variable, even a variable that is
defined as volatile, the propagation of the
new value to other threads that are moni-
toring the same variable is highly non-
portable. C and C++ programmers must
understand the code generation model for
each of the optimization modes they
choose to use with their compiler. They
must understand the underlying architec-

ture’s cache coherency model, and must
study the underlying, real-time operating
system’s thread-scheduling semantics.

Often, the information required to
develop reliable code is not well docu-
mented, and programmers have to spend
considerable time and effort performing
detective work to make sure they fully
understand the platform they are target-
ing. This detective work often consists of
trial-and-error experimentation. This may
leave developers with lingering uncertain-
ties as to whether their experimentation
has uncovered all of the underlying plat-
form’s peculiarities and that they fully
understand them. The software they write
must be tested extensively to make sure it
runs correctly on the targeted platform;
however, the assumptions on which the
correct operation of the software depends

are rarely documented. If this software is
ever moved to a different CPU, compiler,
or RTOS, then extensive code review and
retesting are required.

The RTSJ exhibits some of the same
difficulties encountered by C and C++
developers. Though this specification
more carefully constrains real-time opera-
tion of threads than Standard Edition
Java, it does not fully specify the semantics
of the real-time libraries. Many of the
capabilities offered within the RTSJ
framework are optional, and the exact
semantics of certain other features such as
precisely when to trigger execution of a
deadline-overrun handler are incompletely
defined. This is one of the reasons that
the draft safety-critical Java specification
selects a subset of the full RTSJ frame-
work. This subset specifically excludes

capabilities that are difficult to define and
implement in a portable way, and avoids
many complex and costly features that are
less relevant to developers of safety-criti-
cal or hard real-time systems. This results
in a much smaller, more easily understood
subset of core functionality, early imple-
mentations of which run more than three
times faster than existing full RTSJ imple-
mentations on certain benchmarks.

Certain programming abstractions that
are critical to developers of safety-critical
code are totally irrelevant to typical devel-
opers of management information sys-
tems. Thus, languages like C, C++, and
Standard Edition Java do not provide sup-
port for these abstractions. Consider, for
example, the need of safety-critical devel-
opers to know the following:
1. Exactly how much real memory is

required for the run-time stack of a
safety-critical thread. (Note that safety-
critical systems generally do not have
hard disks and have no support for vir-
tual memory or for dynamic expansion
of a run-time stack.)

2. Exactly how much memory is required
to represent a particular data structure
that is going to be shared between
multiple threads.

3. Exactly how much CPU time is
required to reliably execute particular
threads within real-time timing con-
straints [6].

4. Exactly how much time each thread
might need to block while waiting for
access to a shared resource that is
required to complete a particular safe-
ty-critical task on schedule [6].
The safety-critical Java proposal

addresses these issues by introducing stan-
dard meta-data annotations that allow
programmers to constrain the behavior of
particular methods. For example, an
@StaticAnalyzable annotation denotes
that the implementation of the method
must adhere to particular style guidelines
that allow the memory usage and the CPU
time to be automatically determined. A
special safety-critical byte-code verifier
enforces that the code conforms to these
style guidelines, and a separate static analy-
sis tool determines the resource needs for
each targeted platform.

Another special, hard real-time
abstraction supported by the draft safety-
critical Java proposal is a special synchro-
nization mechanism known as priority
ceiling emulation. With this mechanism,
the programmer is required to specify an
upper bound on the priorities of threads
that might attempt to perform synchro-
nized access to each lock. This upper
bound is known as the ceiling priority.

“Often, the information
required to develop

reliable code is not well
documented, and

programmers have to
spend considerable time
and effort performing

detective work to make
sure they fully

understand the platform
they are targeting.”

A New Twist on Today’s Technology

10 CROSSTALK The Journal of Defense Software Engineering February 2006

When a thread acquires this lock, the
thread’s priority is immediately boosted to
the ceiling priority. When the thread
releases the lock, the thread’s priority is
restored to its original value.

Within the safety-critical profile, prior-
ity ceiling emulation is the only supported
synchronization mechanism. A specializa-
tion of priority ceiling locks is known
within the safety-critical profile as atomic
locking. Programmers make use of a spe-
cial syntax to identify objects that use
atomic priority ceiling emulation to coor-
dinate shared access between multiple
threads. For each such object, the safety-
critical byte-code verifier assures that the
component does not perform any block-
ing operation while a given thread holds
the object’s atomic lock. With this byte-
code enforcement in place, the implemen-
tation of atomic locks (on single-proces-
sor systems1) is very efficient and the
worst-case blocking time to access an
atomic lock is easily analyzed.

In particular, if a given thread is able
to reach the point of entry to that lock, it
is guaranteed that no other thread owns
the lock. If another thread owned the
lock, it would be executing at a higher pri-
ority so this thread would not be running.
Thus, the blocking time is always zero.
This important abstraction is recommend-
ed for all resource sharing among hard
real-time safety-critical threads. It can only
be implemented reliably through coordi-
nation between static analysis tools and
run-time services. This coordination is
provided within the safety-critical Java
profile. It is not available in C, C++,
Standard Edition Java, or the RTSJ.

Another important consideration is
management of temporary scratch pad
memory during the execution of hard,
real-time, safety-critical threads. Tempo-
rary memory may be required to support
digital signal processor analysis of sensor
inputs, and to manage buffers for commu-
nication with redundant onboard, safety-
critical modules and with remote systems
that are, for example, providing air traffic
control directives. The C malloc()/free()
and C++ new()/delete() services are sub-
ject to memory fragmentation. Thus, they
should not be used in memory-limited,
safety-critical systems.

Java’s automatic garbage collection sys-
tem can defragment the dynamic memory
heap. But the complexity and asynchrony
of automatic garbage collection are very
difficult to certify to the satisfaction of
Federal Aviation Administration auditors.
For this reason, the draft safety-critical
Java profile provides an alternative memo-
ry management technique. We identify this

approach as safe-scoped memory. It is a
generalization of the RTSJ’s scoped mem-
ory abstraction. In essence, the draft safe-
ty-critical profile allows objects to be allo-
cated within the activation frames of each
method.

In contrast with C and C++, which
also allow objects to be allocated on the
run-time stack, the safety-critical Java pro-
posal uses programmer annotations to
track the flow of stack-allocated objects;
its byte-code verifier guarantees that no
reference to a stack-allocated object lives
longer than the object itself. This solves
the all-too-common dangling pointer
problem that plagues C and C++ devel-
opment.

In contrast with the full-RTSJ scoped
memory abstractions, which also prevent
dangling pointers, the safety-critical pro-
file detects scoped memory violations at

compile time rather than at run-time. In
summary, the proposed safety-critical Java
temporary memory abstractions support
much more reliable operations than com-
mon alternatives.

Availability
Availability addresses the requirement that
high-integrity software must be always
ready to perform its function. Availability
is often measured in terms of a quantity
of nines, representing the percentage of
total time that the high-integrity system
can be relied upon to fulfill its duty. For
example, seven nines availability means the
system is running reliably 99.99999 per-
cent of the time. Note that seven nines
operation allows only half a second of
downtime per year.

Strategies for assuring high availability
generally consist of a combination of the
following:
• Take every reasonable action to maxi-

mize reliability as this will extend the
mean time between failures. Reliability was

discussed in the previous section.
• Minimize downtime whenever failures

are encountered by doing the following:
o Provide fast, deterministic restart

of a failed system.
o Provide fast, deterministic recon-

figuration of software device dri-
vers whenever failed hardware
components might have to be
replaced with upgraded hardware –
if possible, upgrade device drivers
and hot-swap hardware without
rebooting.

• Support redundant computation and
communication so that standby com-
ponents can quickly take responsibility
for ongoing services when particular
components fail.
Providing a fast, deterministic restart

of a failed system is an obvious require-
ment for high-availability applications.
Achieving this objective is not trivial.
Consider how long it takes to turn on typ-
ical computers and various smart gadgets
such as cell phones. Startup is especially
troublesome in typical Java environments,
including compliant, full RTSJ implemen-
tations, because the startup process
includes dynamic loading of byte code
and translation of this byte code into
native machine language by just-in-time
(JIT) compilers.

The draft safety-critical Java profile
addresses this concern by requiring static
compilation, initialization, and linking of
components. Unlike traditional Java, in
which the initial values of many shared
variables – even of so-called constant vari-
ables – depends on the order in which cer-
tain non-deterministic startup activities
are performed, the safety-critical profile’s
byte-code verifier enforces fully determin-
istic initialization of shared static vari-
ables. The safety-critical Java linker binds
all of the components together and initial-
izes shared memory in the static load
image. The large majority of this load
image can be burned into read-only mem-
ory (ROM) and accessed directly out of
ROM. Only objects with variable contents
must be copied into random access mem-
ory at startup time.

Occasionally, highly available systems
experience hardware failures. When hard-
ware must be replaced, it is often neces-
sary to replace software device drivers that
control the hardware. Few real-time oper-
ating systems provide direct support for
dynamic replacement of device drivers.
Larger desktop operating systems usually
support plug-and-play devices, but the
protocols for using plug-and-play tech-
nologies are not especially reliable. Often,
conflicts between device drivers supplied

“Certain programming
abstractions that are

critical to developers of
safety-critical code are

totally irrelevant to
typical developers of

management information
systems.”

Applying RAMS Principles to the Development of a Safety-Critical Java Specification

February 2006 www.stsc.hill.af.mil 11

by different vendors result in unreliable
operation of the newly configured envi-
ronment. A goal for the safety-critical Java
profile is to support reliable and deter-
ministic reconfiguration of device drivers,
both for situations in which the device dri-
vers are replaced without downtime and
for situations in which hardware replace-
ment requires system reboot.

As with many other issues, the safety-
critical Java profile tackles this challenge
using a combination of programmer
annotations, special byte-code verification,
and reliable run-time memory manage-
ment services, specifically the following:
1. All of the memory consumed by a

device driver is organized as a contigu-
ous region of a budgeted size. If a par-
ticular device driver is removed, all of
the memory previously set aside for
that device driver is instantly reclaimed
without any fragmentation issues. This
memory can serve the needs of the
replacement device driver.

2. The safety-critical Java profile provides
annotations to allow programmers to
describe the interface requirements of
device drivers in sufficient detail to
allow the static analysis tools to verify
that a particular device driver is a suit-
able replacement for an existing device
driver. Specifically, programmers can
do the following:
a. Characterize which inside/outside

ports the device needs to read and
write.

b. Identify to which interrupt vectors
the device driver needs to respond.

c. Specify the maximum amount of
time the device driver is allowed to
hold particular interrupts disabled.

d. Define the precise entry points
whereby application code commu-
nicates with the device driver, and
enforce that every invocation of
these services is consistent with the
interface expectations for that ser-
vice.

Support for redundant computations
and failover processing is not directly sup-
ported by the safety-critical Java profile. It
is important to note that the Java platform
was originally introduced as an Internet
programming language. As such, there is
considerable experience using Java for
networked applications. Since the draft
safety-critical Java profile establishes a
strong foundation for reuse of portable,
hard, real-time software components, it
should be straightforward to develop
portable libraries to support safety-critical,
networked communications to support
fault-tolerant and high-availability redun-
dant computations.

Maintainability
With many safety- and mission-critical
systems, fielded software must endure for
many years, often several decades. During
its useful lifetime, this software evolves in
response to changing platform require-
ments, new communication protocols,
integration of new functionality, and so
forth. Over the lifetime of a particular sys-
tem, it is common for the costs of soft-
ware maintenance to far exceed the costs
of the original software development.
Typical maintenance activities include (1)
fixing a bug, (2) addressing a performance
issue, or (3) adding new functionality.

Maintaining real-time software is partic-
ularly difficult because the declared inter-
faces for C and C++ components do not

reflect all the conditions required for reli-
able composition of real-time components.
This means developers who are called
upon to make changes to existing software
cannot determine by looking at the com-
ponent interface alone what rules they
must follow for their changes to integrate
reliably with other existing software. In par-
ticular, they do not know the following:
1. Whether incoming arguments might

refer to temporary objects or perma-
nent objects, and whether the refer-
enced objects might be shared with
other threads.

2. Whether memory resources have been
budgeted to allow the implementation
of a particular service to allocate per-
manent or temporary objects.

3. Which memory allocation budgets
must be increased for this revised
component to be able to reliably allo-
cate additional memory.

4. Which memory allocation budgets can
be decreased to make this component
run more efficiently.

5. Which task cost-estimates must be
modified if changes to this component
affect its CPU time requirements.
Maintainers of real-time software

must search for all the contexts in which
particular components reside to determine
what sort of changes they may make to
those components without compromising
system reliability.

Scalability is a generalization of main-
tainability. Many modern software systems
experience evolutionary change that tracks
Moore’s Law [7]. As processors and com-
puter memory decrease in cost and
increase in capacity, software grows in size
and complexity to match the new capacity.
Studies of certain commercial, embedded
software systems have observed that it is
common for software size to double every
18 to 24 months [8].

Compared with C and C++, Java has
shown tremendous strengths as a plat-
form to support easy integration and eco-
nomic scalability. This is because all of the
Java software is very portable, and because
strong object-oriented abstractions mean
that independently developed compo-
nents integrate cleanly, without compro-
mising the integrity of each other’s encap-
sulation boundaries. C, in contrast, offers
very little to help manage the complexity
of ever-expanding software systems. With
its object-oriented features, C++ does
much better than C at separating concerns
of independent software development
teams to facilitate software maintenance
and scalability issues. However, the lack of
true portability, the inherent complexity in
the language itself, and its lack of auto-
matic garbage collection makes C++ a
more difficult tool than Java in its support
for software maintenance and scalability.

The proposed safety-critical Java pro-
file addresses these issues by doing the fol-
lowing:
1. Maintaining real-time software as

Vanilla Java source code with Java
Development Kit 5.0-style meta-data
annotations to document the interface
requirements associated with each
software component.

2. Providing automatic consistency
checking between independent inter-
faces, assuring that each method invo-
cation satisfies the annotated interface
requirements, that overriding method
interfaces are consistent with the over-

“A goal for the
safety-critical Java profile

is to support reliable
and deterministic

reconfiguration of device
drivers, both for

situations in which the
device drivers are
replaced without
downtime, and for
situations in which

hardware replacement
requires system reboot.”

A New Twist on Today’s Technology

12 CROSSTALK The Journal of Defense Software Engineering February 2006

ridden interfaces, and that method
implementations are entirely consis-
tent with the annotated method inter-
face declarations.

3. Providing automated analysis to deter-
mine memory and CPU-time resource
requirements to allow automatic con-
figuration of resource budgeting and
real-time scheduling each time any
system component is modified.
Tools to automate the required consis-

tency checking and resource needs analy-
sis are not generally available for C and
C++ development.

Safety
With respect to software systems, safety
represents the notion that the computer
system will do no harm. In this regard,
safety is opposed to availability and relia-
bility. The safest computer system might
be the system that never gets powered on.
Assuming that we are required to satisfy
safety objectives in combination with reli-
ability and availability objectives, the safe-
ty consideration consists primarily of sat-
isfying safety certification requirements.

Of particular relevance to safety certi-
fication requirements is the mechanism
for deployment of native machine code.
Level-A certification requires that all code
coverage analysis and testing be per-
formed with the native machine language,
and that responsibility for every machine
code instruction and for every test case be
traceable from original system require-
ments to architecture and design, to
source code and test plans, and finally to
machine code.

If certain machine instructions are not
exercised sufficiently by the existing test
cases, developers are required to analyze
whether the code is really necessary to
satisfy the system requirements. If that
code is not necessary, the corresponding
source code should be removed or
restructured to make it more consistent
with the system requirements. If the code
is necessary, the test plan must be modi-
fied to make the test plan consistent with
the original system requirements. In some
cases, failure of test cases to cover all
machine code reveals inaccuracies or
inconsistencies in the original system
requirements. In that situation, the origi-
nal system requirements must be refined.
Always, a complete traceability audit trail
must be maintained.

Note that the traditional Java execu-
tion model is entirely inconsistent with
this requirement for traceability from
source code to machine code. Traditional
Java virtual machines hide the translation
of byte code to machine code within a

JIT compiler that is part of the run-time
environment. Some sophisticated virtual
machines actually produce multiple
native-code translations for each byte-
code method, optimizing the code differ-
ently in each translation based on run-
time profiling information. The safety-
critical Java profile addresses this issue by
supporting deterministic compilation,
linking, and initialization model. The
entire safety-critical application is translat-
ed to native machine code and linked into
a ROM-loadable image prior to execution.
Since this technology is designed to sup-
port safety-critical development, tools will
facilitate mappings between machine code
and the corresponding source code.

C and C++ development tool chains
provide similar traceability support
between source code and machine code.

Summary
Across the spectrum of RAMS objec-
tives, the draft safety-critical Java specifi-
cation offers important benefits over
alternative approaches based on C, C++,
traditional Java, or RTSJ Java. As com-
mercial implementations of the proposed
safety-critical Java standard become avail-
able, developers of safety-critical systems
will be able to more economically deliver
high-quality software that satisfies RAMS
objectives.u

References
1. Radio Technical Commission for

Aeronautics, Inc. “RTCA DO-178B,
Software Considerations in Airborne
Systems and Equipment Certifica-
tion.” Washington, D.C.: RTCA, 1
Dec. 1992 <www.rtca.org>.

2. Bollella, G., J. Gosling, B. Brosgol, P.
Dibble, S. Furr, and M. Turnbull. The
Real-Time Specification for Java.
Addison-Wesley, Jan. 2000 <www.rtj.
org>.

3. Sun Microsystems Inc. “The Java
Language Environment: A White
Paper.” Mountain View, CA: Sun
Microsystems, Inc., 1995 <http://java.
sun.com/docs/white/langenv>.

4. Nilsen, K. “Making Effective Use of
the Real-Time Specification for Java.”
San Diego, CA: Aonix, Oct. 2004
<http://research.aonix.com/jsc/rtsj.
issues.9-04.pdf>.

5. Nilsen, K. “Draft Guidelines for
Scalable Java Development of Real-
Time Systems.” San Diego, CA: Aonix,
May 2005 <http://research.aonix.
com/jsc/rtjava.guidelines.5-6-05.pdf>.

6. Klein, M., T. Ralya, B. Pollak, and R.
Obenza. A Practitioner’s Handbook
for Real-Time Analysis: Guide to Rate

Monotonic Analysis for Real-Time
Systems. Kluwer Academic Publishers,
Nov. 1993 <www.sei.cmu.edu/publi
cations/books/other-books/rma.
hndbk.html>.

7. Moore, Gordon. “Cramming More
Components Onto Integrated Cir-
cuits.” Electronics Magazine 19 Apr.
1965.

8. Bourgonjon, R. “The Evolution of
Embedded Software in Consumer
Products.” International Conference
on Engineering of Complex Com-
puter Systems, Ft. Lauderdale, FL,
1995 (unpublished keynote address).

Note
1. On a multiprocessor system, the

implementation is a bit more complex,
but the programming and static analy-
sis abstractions are comparable. The
safety-critical Java profile is designed
to support straightforward migration
of hard real-time code from single-
processor to multi-processor imple-
mentations.

About the Author

Kelvin Nilsen, Ph.D., is
chief technology officer
of Aonix, an internation-
al supplier of mission-
and safety-critical soft-
ware solutions. Nilsen

oversees the design and implementation
of the PERC real-time Java virtual
machine along with other Aonix prod-
ucts, including ObjectAda compilers,
development environment, libraries, and
commercial off-the-shelf safety certifi-
cation support. Nilsen’s seminal research
on the topic of real-time Java led to the
founding of NewMonics, a leader in
advanced real-time virtual machine tech-
nologies to support real-time execution
of Java programs. In 2003, Aonix
acquired NewMonics. Nilsen has a
Bachelor of Science in physics from
Brigham Young University and a Master
of Science and doctorate degree both in
computer science from the University of
Arizona.

Aonix
877 S Alvernon WAY
Tucson, AZ 85711
Phone: (520) 991-6727
Fax: (520) 323-9014
E-mail: kelvin@aonix.com

February 2006 www.stsc.hill.af.mil 13

This article discusses a graphic that
shows the status of larger projects,

how to gather the information needed,
read the status chart, and when needed,
show more detailed breakdown for each
subproject.

Motivation
Imagine a steering committee opening a
large binder for a fairly large project,
hoping to see its status. They are met by
Gantt charts, cost expenditure tables, and
if they are lucky, earned-value graphs.
None of these quickly and accurately
show the committee what is going on
with the project, which components are
in trouble, and where they stand with
respect to delivery. Worse, many projects
these days use incremental, concurrent,
or agile approaches, which do not fit into
the standard governance milestones of
requirements complete, design complete, code com-
plete, and integration complete.

This is not the article to review all the
problems with that standard project gov-
ernance model. The problems may, how-
ever, be briefly summarized as follows:
• The standard governance model is a

single-pass waterfall model that has
been roundly criticized over the years.

• It does not support incremental or
concurrent approaches, both of
which are being recommended more
frequently these days.

• The Gantt chart does not show per-
centage complete very well, nor expected
versus actual progress.

• The standard earned-value graph
shows tasks complete well, but tasks
complete does not reflect true progress
on the project; true value in software
development accrues suddenly (or
fails suddenly) only at the moment at
which the new features are integrated
into the code base.
What is needed is a way that more

accurately shows true value, more readily
shows expected versus actual progress,
and allows teams using different combi-
nations of waterfall, incremental, concur-
rent, and agile approaches to show their
varied strategies.

This article describes a proposed
graphic that meets those constraints.
Humans and Technology is starting to
use it on a program that is fairly large for
the private sector: about a dozen applica-
tions and two dozen supporting compo-
nents and databases to be installed in var-
ious configurations in two dozen receiv-
ing sites. The graphic appears to work in
our situation and has let us update a
waterfall governance model to permit
agile, concurrent, and incremental devel-
opment.

The figures in this article are simplifi-
cations of the more complicated versions
created for that program, so we have a
sense that they scale reasonably. We see
ways to update the graphic automatically,
or even to update manually monthly for
the steering committee meeting. While
not fully tested, it shows promise.

Here are the details – please write me

if you try it out and come up with
improvements. (Note: The figures in this
article are printed in black and white; the
online version [1] uses color.)

The Graphic
The graphic contains the following ele-
ments:
• The components being built, how

each fits into the system architecture,
and the person responsible for each.

• Codependency relations between hor-
izontal and vertical components.

• The incremental growth strategy for
each component over the project life.

• The expected versus actual amount of
work completed to date.

• A color or shading to mark the alarm
level for each component.

The following is a discussion of those
topics in three categories: the system
structure, the intended strategies, and

A Governance Model for Incremental,
Concurrent, or Agile Projects

Use the model in this article to regain oversight of a complex multi-project that uses concurrent and incremental development
strategies in differing amounts on different subprojects. The model makes this possible by estimating and then tracking intend-
ed versus actual functionality integrated either monthly or quarterly.

Dr. Alistair Cockburn
Humans and Technology

Figure 1: Governance Graphic

Common UI [Smith]

Project Zewa Status

Legend

Significantly behind

On track

Not significantly behind

Actual vs. Expected done

Intended done after
each internal release

Component
Common

component

App

Application

UI Shell [Jones]

Workstation

Security [Sanchez]

DB svcs [Rich]

App-Independent BackEnd

Security [Sanchez]

App 1
[Harmon]

App 2
[Reese]

App 3
[Marks]

App-Specific Back End

DB 1 [Rich]

DB 2 [Carmac]

Component
component

>$1M budget

Component
component

< $1M budget

Figure 1:Governance Graphic100% functionality

Status at: 2006.05.15 in: 2005.01-2005.12

UI User Interface

DB Database

A New Twist on Today’s Technology

14 CROSSTALK The Journal of Defense Software Engineering February 2006

expected versus ideal progress.

System Structure
In Figure 1, the three vertical rectangles
indicate applications – the items bought
separately for end-user functionality. The
seven horizontal rectangles indicate ser-
vice components needed across applica-
tions – on the user’s desktop or the back
end. Two of the horizontal components
cross in front of the applications to indicate
that the horizontal component contains a
specific, different functionality or data
for each application. Domain databases
that get extended for each new applica-
tion are likely to be among these applica-
tion-specific, back-end components
(more on this later).

The system shown in Figure 1 is fairly
simple. The first project for which I drew
this graphic had 17 horizontal and 15 ver-
tical components, and additional coloring
to show legacy components that were to
be removed over time. We were still able
to draw it legibly on legal-sized paper.

Intended Strategies
Although incremental development has
been around much longer than the agile
movement, the question of how to show
different incremental strategies for gover-
nance purposes – preferably in a small

space – is still open.
Agile project teams measure progress

not according to how many requirements
have been gathered, but by how much
running functionality has been designed,
programmed, and integrated (Ron
Jeffries neatly calls these running tested
features, or RTF [2]). A common way to
show the growth of RTF is through
burn-up charts, as in Figure 2, which
shows the expected versus actual integra-
tion of a set of workflow components by
month.

Agile burn-up charts are very similar
to traditional earned-value charts with
one crucial exception: The team only gets
credit when the features are integrated
into the full code base and the result
passes testing [3]. This single chart shift
makes a big difference in the reliability of
the progress data presented.

Burn charts show more than we need
and take too much space for governance
oversight purposes. To reduce their size
and information, we use the idea of an
internal release (IR).

A team that cannot deploy its system
to live users every few months can pretend
to deploy the system. It can test, inte-
grate, and deploy the system to the com-
puter of one or two friendly but real users.
The team thus exercises the end of their
development process and gets true user
feedback. Putting the system in front of
real users (as opposed to a test machine
in the basement) motivates the develop-
ment team to take their work seriously.

Such an IR should happen every one,
two, or three months. There are many
reasons not to deploy fully every three
months, but there is almost no reason not
to carry out an IR. These IRs fit neatly
into a monthly or quarterly reporting
mechanism.

With RTFs and IRs, we are ready to
capture various development strategy or
strategies that might show up on an
incremental development project.

In Figure 3, the vertical tick-marks
show 10 percent units of completed RTF
from left to right (100 percent complete
at the right). The triangle milestone
markers show the amount of RTF the
team targets to have completed and inte-
grated at each IR milestone. Figure 3
shows three teams’ strategies as follows:
• The top team plans to get less than 10

percent of its functionality in place in
the first IR, and to add functionality
in roughly equal thirds after that.

• The middle team intends to get 25
percent done in the first quarter, 60
percent by the end of the second
quarter, and almost 85 percent

through the third quarter (possibly so
they have time to fix mistakes in the
fourth quarter).

• The bottom team expects to get
almost 20 percent completed and
integrated in each of the first two
quarters, and then to speed up and get
30 percent done in each of the last
two quarters.
Alert readers will notice that these

tickmark drawings capture the vertical
axis of the burn-up charts at the IR
times.

These small diagrams let different
teams work in different ways and report
on their intentions. This is our goal.

Expected Versus Ideal Progress
Intention-Completion Bars
Figure 4 adds to Figure 3 the work actu-
ally completed compared to the work tar-
geted for any point in time.

In Figure 4, the taller vertical bar
moves from left to right within each IR
period to show the current targeted
accomplishment. It can run at a constant
rate within each period according to the
calendar, or it can be synchronized with
the team’s iteration plans (two- to six-
week planning and tracking time win-
dows). The shaded rectangles show the
functionality (RTF) completed and inte-
grated to date.

In Figure 4, we see that the top team
is delivering according to schedule, the
middle team is a little behind, and the
bottom team still has not finished the
work scheduled for the second IR.

Two comments must be made at this
point about RTF. The first is that not all
final deliverables consist of features that
run. Content databases and end-user doc-
umentation are examples. Teams can cre-
ate intention-completion bars for what-
ever their final deliverables are, since
those bars show growth of accomplish-
ment over time.

The second comment is that mea-
sures not tied to RTF are naturally haz-
ardous since it is so easy to start tracking
completion of artifacts that do not
directly get bought by customers. Linking
accomplishments to RTF makes the
reporting of actual value both easier and
more accurate.

Application-Specific Components
Horizontal components such as applica-
tion databases require new work and new
content for each new application.
Progress on these application-specific
horizontal components is typically diffi-
cult to report on since where they are varies
from application to application.

Figure 1:Governance Graphic

Jan Feb Mar Apr May Jun Jul Aug

Failure diagnosis

File attachment

Part attachment

Import calibration

Mod recap

Tool disassembly

100% functionality

Planned

Actual

Figure 2: Burn-Up Chart

DB Database

Figure 2: Burn-Up Chart

Figure 3: Target Progress Markers

Figure 3: Target Progress Markers
Figure 4: Intention-Completion Bars

D

Project/

Component

Sub-

Component

Owner Percent Done in

IR1

Total

Size

Units Confidence

in Estimate

(L, M, H)
IR 1 IR 2 IR 3 IR 4

Figure 4: Intention-Completion Bars

Figure 4: Intention-Completion Bars

D

A Governance Model for Incremental, Concurrent, or Agile Projects

February 2006 www.stsc.hill.af.mil 15

To show the status of such a compo-
nent, we use intention-completion bars
for the independent portion of the com-
ponent and for each application it must
serve. This lets the teams move at differ-
ent speeds as suits their particular situa-
tions, and allows the steering committee
to see each team’s status.

Summarizing the Graphic
Let us review the elements of the graph-
ic briefly:
• The rectangles represent components,

subsystems, or applications. Vertical
rectangles show applications; hori-
zontal ones show components that
get used across multiple applications
(this could be reversed for better lay-
out if, for example, there are many
applications and only a few cross
application components).

• Each rectangle shows the place of the
component in the overall architecture:
The top set of horizontal compo-
nents reside on the desktop, the mid-
dle and bottom sets of horizontal
components reside as back-end ser-
vices. The horizontal rectangles run-
ning behind the applications get creat-
ed independently of the applications;
the horizontal rectangles running in
front of the applications require appli-
cation-specific work or content.

• Intention-completion markers are
created for each component. They
show the percentage of RTF intended
for completion at each IR milestone,
the expected and the actual current
accomplishment, and the alarm level.
Intention-completion bars are created
for each component and for each
intersection of application-dependent
components.

Collecting the Information
The information rendered in Figure 1
also fits into a spreadsheet, a more useful
place to keep it while gathering and
updating the information. We can use
automated tools to gather information
about each component every week or
two, and roll up each team’s accomplish-
ments into reports at various levels. The
highest level is the one that gets painted
onto the graphic either by hand or auto-
matically. (The graphic can be generated
automatically using graphic markup lan-
guages, but that programming effort may
take longer than simply coloring the bars
each month).

Gathering the Estimates
It is one thing to say, “We intend to be 20
percent done after the first internal

release,” but the steering committee
needs to know, “Twenty percent of
what?” Being behind on 20 percent of
two use cases is very different than being
behind on 20 percent of 80 use cases.

To capture the of what for tracking, we
need three pieces of information. The
first, “What is the unit of accomplish-
ment?” often consists of use cases, or
more likely, individual steps in use cases.
Sometimes something quite different is
appropriate. A desktop component might
have as units of accomplishment user
interface (UI) widgets (frames, pull-down
lists, buttons) and interface calls used by
the applications. A database might have
entities and attributes, a Web site might
have articles and images, a medical data-
base might have medical codes as a unit
of accomplishment.

The second piece of information is,

obviously, “About how many units do
you expect to create?”

The third piece of information is the
confidence level on the estimate. At the
beginning of the project, it is appropriate
to have low confidence ratings in the esti-
mates: “We expect somewhere between
15 and 50 UI widgets, call it 30, plus or
minus 50 percent;” however, that comes
with the caution, “You called me into this
room and made me give you numbers,
but it’s not like I have a really good basis
for those numbers!”

The initial rough-size estimate is still
useful for getting an early handle on the
size and shape of the thing to be built.
That is why the information is collected
even when the confidence rating is low.
Marking a low confidence rating is useful
to the project leaders because they can
then raise the priority of getting enough
information to improve the confidence
level.

Needless to say, the estimate should
be updated at the start of successive iter-
ations with raised expectations about its
accuracy and confidence levels.

Table 1 shows a spreadsheet that can
be used to capture the estimates. Note
that the confidence rating is accompanied
by a smiling, neutral, or frowning face to
visually tag this important information.

Gathering the Status
To tag the timeline, we need to give each
iteration or planning window a milestone
number such as an IR completed then
followed by iteration completed. Thus,
milestone 0.3 means the end of the third
iteration before the first IR, and mile-
stone 2.1 means the end of the first iter-
ation after the second IR.

After iterations, the teams send in

Desktop frame Mr. A 0 20 80 100 30 UI widgets Med :-|

Desktop APIs Mr. A 20 50 80 100 60 API calls Lo :-(

App 1 UI Mr. B 5 60 90 100 450 UC steps Lo :-(

App 1 app Mr. B 10 60 90 100 450 UC steps Hi :-)

App 1 bus svcs Mr. B 5 50 80 100 450 UC steps Lo :-(

DB 1 setup Ms. C ?? Lo :-(

DB 1 App 1 Ms. C 60 codes Lo :-(

DB 1 App 2 Ms. C 10 codes Lo :-(

DB 2 setup Ms. C ?? Lo :-(

DB 2 App 1 Ms. C 2,000 entity attributes Lo :-(

DB 2 App 2 Ms. C 1,500 entity attributes Lo :-(

Table 1: Estimating Spreadsheet

Desktop frame Mr. A 0 20 80 100 30 UI widgets 50% 15 15

Desktop APIs Mr. A 20 50 80 100 60 API calls 65% 39 36

App 1 UI Mr. B 5 60 90 100 450 UC steps 75% 337 310

App 1 app Mr. B 10 60 90 100 450 UC steps 75% 337 320

App 1 bus svcs Mr. B 5 50 80 100 450 UC steps 65% 292 280

Table 2: Summary Spreadsheet

Project/

Component

Sub-

Component

Owner Percent Done in

IR1

Total

Size

Units Confidence

in Estimate

(L, M, H)
IR 1 IR 2 IR 3 IR 4

Project/

Component

Sub-

Component

Owner Percent Done In Total

Size

Units Expected

at IR 2.3

(units)

Actual

at IR 2.3

(units)IR 1 IR 2 IR 3 IR 4

at IR 2.3

(percent)

Expected

API - Application Program Interface, App - Application, UC - User Class

Table 1: Estimating Spreadsheet

“A team that
cannot deploy its

system to live users
every few months can
pretend to deploy the

system. It can test,
integrate, and deploy

the system to the
computer of one or two
friendly but real users.”

A New Twist on Today’s Technology

16 CROSSTALK The Journal of Defense Software Engineering February 2006

their RTF numbers, which get rolled up
into a summary spreadsheet at any level
of granularity desired. The nice thing
here is that this roll-up can be produced
automatically with simple tools. Table 2
shows how the first few rows of such a
spreadsheet might look after iteration
2.3.

The Status Report Packet
The graphic in Figure 1 serves as a good
summary page of the package put in front
of the steering committee. That package
also needs detail pages for the separate
subprojects.

Table 3 shows a sample detail page.
This detail page has three sections after
the header:
• A status/targeted/deferred and risk

snapshot for each section of work
within the component.

• A commentary, including surprises
and lessons learned during the previ-
ous period.

• Cost roll-up information.
The most unusual part of this status page
is the way in which the intention-comple-
tion bars are constructed to describe the
strategy and accomplishments of non-
RTF work.

Intention-Completion Bars for
Non-RTF Work
When someone sees a component
marked with a high-alarm status bar on
the summary page, they will naturally

want to read more detail. They will need
to understand what is happening with
respect to requirements gathering, UI
design, design and programming, and
user documentation.

The good news is that we can use the
intention-completion bars to show
progress within each specialty, whether
the team is using a sequential (waterfall)
strategy or a concurrent strategy. Figures
5 and 6 illustrate the two.

Figure 5 shows a team planning to
work in sequential fashion. They plan to
finish all their requirements in the first
period. They do not plan on starting
either the UI design or the programming
in that period. They expect to get the UI
design fully complete in the second quar-
ter. They plan to get perhaps 10 percent
of the programming done in the second
quarter, and the rest done equally in the
third and fourth quarters.

Figure 6 shows a strong concurrent
strategy. This team plans to get not quite
a third of their requirements settled in
the first period, and to have nearly as
much UI design and programming done
as requirements gathered. The require-
ments people will lead the UI design peo-
ple by a small amount, and the UI design
people will lead the programmers by a
small amount, but otherwise these groups
will run parallel to each other. They
intend to continue in this fashion
throughout the entire project.

In this article, I do not wish to indi-
cate that either approach is superior to
the other. What is important here is that
both sequential and concurrent strategies
(and many combinations) can be shown
using the intention-completion bars.

Status,Targeted, Deferred,
and Risks
For any component, the steering commit-
tee members will want to see the follow-
ing at the top of the detail page:
• The intention-completion bars for the

whole component from the summary

sheet, and for the work efforts within
the component, including non-RTF
work as just described.

• What was targeted for accomplish-
ment during this reporting period?

• What work is being deferred from
this period into the next?

• The dominant problems each sub-
team is facing or the risks they expect.

The risks and problems column lets the
team signal for help, whether that means
more people, more equipment, more
time with customers, etc.

Surprises, Lessons Learned, Items
Needing Special Attention
The middle of the page allows the team
to reflect and report on what happened
during the reporting period.

The first section describes the sur-
prises discovered. On projects I have vis-
ited, these have included the program-
mers not getting as much done as expect-
ed, a piece of technology not working as
expected, or, conversely, a new practice
such as daily stand-up meetings being
effective.

The second section describes the
lessons to be taken out of the period’s
work. These might include multiplying
developer estimates by a factor before
committing to them, doing technology
spikes before committing to technology,
or choosing to keep the new, daily, stand-
up meetings. These must be truly lessons
learned within the period, not speculations
on what might work in the future.

The third section is for anything the
team wishes to report on. It may expand
on risks or highlight some particular
worry to which they will be paying close
attention.

Cost Roll-up
Finally, the steering group needs to see
how fast the money is being used. This
section may be presented in tabular or
burn-up form, and include staffing sizes
as well as budget information as desired.

Figure 5: A Sequential Development Strategy

Requirements

UI Design

Programming

Figure 8: A Sequential Development Strategy
Requirements

UI Design

Programming

Figure 9: A Concurrent Development Strategy

C

Detail Sheet for: UI Shell
Product Manager: Jones
S

Figure 6: A Concurrent Development Strategy

rategy
Requirements

UI Design

Programming

Figure 9: A Concurrent Development Strategy

C

Table 1: Estimating Spreadsheet

Desktop frame Mr. A 0 20 80 100 30 UI widgets 50% 15 15

Desktop APIs Mr. A 20 50 80 100 60 API calls 65% 39 36

App 1 UI Mr. B 5 60 90 100 450 UC steps 75% 337 310

App 1 app Mr. B 10 60 90 100 450 UC steps 75% 337 320

App 1 bus svcs Mr. B 5 50 80 100 450 UC steps 65% 292 280

Table 2: Summary Spreadsheet

P

Project/

Component

Sub-

Component

Owner Percent Done In Total

Size

Units Expected

at IR 2.3

(units)

Actual

at IR 2.3

(units)IR 1 IR 2 IR 3 IR 4

at IR 2.3

(percent)

Expected

A

Table 2: Summary Spreadsheet

A Governance Model for Incremental, Concurrent, or Agile Projects

February 2006 www.stsc.hill.af.mil 17

Summary
The first contribution of this article is the
description of the intention-completion
graphic, showing the following:
• The strategy that the team has in mind

for its work, whether sequential or
concurrent.

• How much the team had expected to
have done at this reporting point.

• How much the team actually has done
at this point.
The intention-completion graphic is

important because it allows different
teams to choose different strategies and
report on them, all in the same format.
The absence of a common reporting for-
mat has been a painful point for incre-
mental, concurrent, and agile projects for
a long time.

The second contribution is the project
summary graphic and its spreadsheet
counterpart. The spreadsheet allows the
leadership team to collect estimates and
plans at a very early point in the project,
and easily update these by using automat-
ed tools. The graphic provides a way to
show at a glance the entirety of a quite
complex project. This addresses the ques-
tions, “What are we building?” and “How
are we doing?”

The third contribution is the descrip-
tion of a sample, one-page detail sheet
(see Table 3) for each component or sub-
project. This page shows at a glance the
strategies and status within the subproject,
along with key information the steering
committee needs to understand and
respond to.

The resulting packet of information
allows people who meet only once a
month or quarter to assess the intentions
and status of projects that use various
mixtures of waterfall, incremental, con-
current, and agile strategies.

If you use this model and find ways of
improving it, please let me know at
<acockburn@aol.com.>u

References
1. Cockburn, A. “A Governance Model

for Incremental, Concurrent, or Agile
Projects.” CrossTalk Feb. 2006
<www.stsc.hill.af.mil/crosstalk/2006/
02/0602Cockburn.html>.

2. Jeffries, R. “A Metric Leading to
Agility.” XProgramming.com 14 June
2004 <www.xprogramming.com/xp
mag/jatRtsMetric.htm>.

3. Cockburn, A. “Earned Value and Burn
Charts.” Technical Report. Humans and
Technology, Apr. 2004 <http://alistair.
cockburn.us/crystal/articles/evabc/
earnedvalueandburncharts. htm>.

Figure 9: A Concurrent Development Strategy

Composite <What the accom-
plishment was to
be in this period

for this sub-project.>

<What got moved
out of this period
into the next period?>

<The dominant risk
for this sub-project.>

<The amount of
requirements
intended to be
completed in this
period.>

<What requirements
 got moved out of
 this period into the
next period?>

<The dominant
risk for the
requirements
gathering effort.>

<The amount of user
interface design
intended to be com-
pleted in this period.>

<What user interface
design got moved out
of this period into the
next period?>

<The dominant risk
for the UI designers.>

<The amount of RTF
intended to be
integrated in this
this period.>

<What programming
got moved out of this
period into the next
period?>

<The dominant risk
for the programmers.>

User Doc. <The amount of end-
user documentation
intended to be
completed in this
period.>

<What end-user
documentation got
moved out into the
next period?>

<The dominant risk for
user documentation.>

Requirements

UI Design

Program

Targeted

Accomplishment

Work Being

Deferred

Dominant

Problem/Risk

Detail Sheet for: UI Shell
Product Manager: Jones
Status at: 2006.05.15

Surprises this Period:

 <Surprises the manager or the team discovered (e.g., the productivity of the programmers
 wasn't as high as expected).>

Lessons Learned this Period:

 <The lessons to be taken out of the period's work (e.g., in the future, multiply developer
 estimates by a factor of 1.5 before committing to them).>
Items Needing Special Attention:

 <Anything the team wishes to report out. It may expand on risks, or highlight some
 particular worry.>

Cost/Budget

ate

Expected $ $

Actual $ $

This Period Total to Date

Table 3: Detail Sheet for UI Shell

Alistair Cockburn, Ph.D.,
is an internationally re-
spected expert on object-
oriented design, software
development methodolo-
gies, use cases, and project

management. The author of two Jolt
Productivity award-winning books, “Agile
Software Development” and “Writing
Effective Use Cases,” as well as the peren-
nial favorite, “Surviving OO Projects,” he
was one of the authors of the Agile
Development Manifesto. Cockburn
defined an early agile methodology for the
IBM Consulting Group in 1992, served as

special advisor to the Central Bank of
Norway in 1998, and has worked in com-
panies from Scandinavia to South Africa,
North America to China. Internationally,
he is known for his seminal work on
methodologies and use cases, as well as his
lively presentations and interactive work-
shops. Many of his materials are available
online at <http://alistair.cockburn.us>.

Humans and Technology
1814 Fort Douglas CIR
Salt Lake City, UT 84103
Phone: (801) 582-3162
E-mail: acockburn@aol.com

About the Author

Use case modeling is an accepted and
widespread technique to capture the

business processes and requirements of a
software application project. Since use
cases provide the functional scope of the
project, analyzing their contents provides
valuable insight into the effort and size
needed to design and implement a project.
In general, projects with large, complicat-
ed use cases take more effort to design
and implement than small projects with
less complicated use cases. Moreover, the
time to complete the project is affected by
the following:
• The number of steps to complete the

use case.
• The number and complexity of the

actors.
• The technical requirements of the use

case such as concurrency, security, and
performance.

• Various environmental factors such as
the development teams’ experience
and knowledge.
An estimation method that took into

account the above factors early in a pro-
ject’s life cycle, and produced an estimate
within 20 percent of the actual comple-
tion time would be very helpful for project
scheduling, cost, and resource allocation.

The Use Case Points (UCP) method
provides the ability to estimate the man-
hours a software project requires from its

use cases. Based on work by Gustav
Karner [1], the UCP method analyzes the
use case actors, scenarios, and various
technical and environmental factors and
abstracts them into an equation. Readers
familiar with Allan Albrecht’s “Function
Point Analysis” [2] will recognize its influ-
ence on UCP; function point analysis
inspired UCP.

The UCP equation is composed of
three variables:
1. Unadjusted Use Case Points (UUCP).
2. The Technical Complexity Factor

(TCF).
3. The Environment Complexity Factor

(ECF).
Each variable is defined and computed
separately using weighted values, subjec-
tive values, and constraining constants.
The weighted values and constraining
constants were initially based on Albrecht,
but subsequently modified by people at
Objective Systems, LLC, based on their
experience with Objectory – a methodology
created by Ivar Jacobson for developing
object-oriented applications [3]. The sub-
jective values are determined by the devel-
opment team based on their perception of
the project’s technical complexity and effi-
ciency.

Additionally, when productivity is
included as a coefficient that expresses
time, the equation can be used to estimate

the number of man-hours needed to com-
plete a project. Here is the complete equa-
tion with a Productivity Factor (PF) included:

UCP = UUCP * TCF * ECF * PF

The necessary steps to generate the esti-
mate based on the UCP method are the
following:
1. Determine and compute the UUCPs.
2. Determine and compute the TCFs.
3. Determine and compute the ECFs.
4. Determine the PF.
5. Compute the estimated number of

hours.

Sample Case Study
In the sections that follow, the UCP
method is retroactively applied to a Web
application developed by the author. This
after-the-fact approach provides a practi-
cal way to establish a baseline PF for pro-
jects already completed. As described
later, the PF helps determine the number
of man-hours needed to complete the
project.

UUCPs
UUCPs are computed based on two com-
putations:
1. The Unadjusted Use Case Weight

(UUCW) based on the total number of
activities (or steps) contained in all the
use case scenarios.

2. The Unadjusted Actor Weight (UAW)
based on the combined complexity of
all the actors in all the use cases.

UUCW
The UUCW is derived from the number
of use cases in three categories: simple,
average, and complex (see Table 1). Each use
case is categorized by the number of steps
its scenario contains, including alternative
flows.

Keep in mind the number of steps in
a scenario affects the estimate. A large
number of steps in a use case scenario will
bias the UUCW toward complexity and
increase the UCPs. A small number of
steps will bias the UUCW toward simplic-
ity and decrease the UCPs. Sometimes, a

Project Estimation With Use Case Points

Software developers frequently rely on use cases to describe the business processes of object-oriented projects. Since use cases
consist of the strategic goals and scenarios that provide value to a business domain, they can also provide insight into a pro-
ject’s complexity and required resources. This article provides an introduction to the Use Case Points method that employs a
project’s use cases to produce a reasonable estimate of a project’s complexity and required man-hours.

Roy K. Clemmons
Diversified Technical Services, Inc.

18 CROSSTALK The Journal of Defense Software Engineering February 2006

Use Case Category Description Weight

Simple Simple user interface. Touches only a
single database entity. Its success
scenario has three steps or less. Its
implementation involves less than
five classes.

5

Average More interface design. Touches two
or more database entities. Between
four and seven steps. Its
implementation involves between
five and 10 classes.

10

Complex Complex user interface or
processing. Touches three or more
database entities. More than seven
steps. Its implementation involves
more than 10 classes.

15

Table 1: Use Case Categories

Table 1: Use Case Categories

Project Estimation With Use Case Points

February 2006 www.stsc.hill.af.mil 19

large number of steps can be reduced
without affecting the business process.

The UUCW is calculated by tallying
the number of use cases in each category,
multiplying each total by its specified
weighting factor, and then adding the
products. For example, Table 2 computes
the UUCW for the sample case study.

UAW
In a similar manner, the Actor Types are
classified as simple, average, or complex as
shown in Table 3.

The UAW is calculated by totaling the
number of actors in each category, multi-
plying each total by its specified weighting
factor, and then adding the products.
Table 4 computes the UAW for the sample
case study.

The UUCP is computed by adding the
UUCW and the UAW. For the data used in
Tables 2 and 4, the UUCP = 210 + 12 = 222.

The UUCP is unadjusted because it does
not account for the TCFs and ECFs.

TCFs
Thirteen standard technical factors exist
to estimate the impact on productivity that
various technical issues have on a project
(see Table 5, page 20). Each factor is
weighted according to its relative impact.

For each project, the technical factors
are evaluated by the development team
and assigned a perceived complexity value
between zero and five. The perceived
complexity factor is subjectively deter-
mined by the development team’s percep-
tion of the project’s complexity – concur-
rent applications, for example, require
more skill and time than single-threaded
applications. A perceived complexity of 0
means the technical factor is irrelevant for
this project, 3 is average, and 5 is strong
influence. When in doubt, use 3.

Each factor’s weight is multiplied by its
perceived complexity factor to produce
the calculated factor. The calculated factors
are summed to produce the Technical Total
Factor. Table 6 (see page 20) calculates the
technical complexity for the case study.

Two constants are computed with the
Technical Total Factor to produce the
TCF. The constants constrain the effect
the TCF has on the UCP equation from a
range of 0.60 (perceived complexities all
zero) to a maximum of 1.30 (perceived
complexities all five).

TCF values less than one reduce the
UCP because any positive value multiplied
by a positive fraction decreases in magni-
tude: 100 * 0.60 = 60 (a reduction of 40
percent).

TCF values greater than one increase
the UCP because any positive value multi-

plied by a positive mixed number increas-
es in magnitude: 100 * 1.30 = 130 (an
increase of 30 percent).

Since the constants constrain the TCF from a
range of 0.60 to 1.30, the TCF can impact the
UCP equation from - 40 percent (.60) to a max-
imum of +30 percent (1.30).

For the mathematically astute, the
complete formula to compute the TCF is:

TCF = C1 + C2

13

∑
i=1

Wi * F1

where,

Constant 1 (C1) = 0.6

Constant 2 (C2) = .01

W = Weight

F = Perceived Complexity Factor

For the rest of us, a more digestible equa-
tion is:

TCF = 0.6 + (.01 * Technical Total Factor)

For Table 6, the TCF = 0.6 + (0.01 * 19.5)
= 0.795, resulting in a reduction of the UCP by
20.5 percent.

ECFs
The ECF (see Table 7, page 21) provides a
concession for the development team’s
experience. More experienced teams will
have a greater impact on the UCP compu-
tation than less experienced teams.

The development team determines
each factor’s perceived impact based on its
perception the factor has on the project’s

Table 2: Computing UUCW

Table 1: Use Case Categories

Use Case

Type

Description Weight Number

of Use

Cases

Result

Simple Simple user interface. Touches only a
single database entity. Its success
scenario has three steps or less. Its
implementation involves less than five
classes.

5 7 35

Average More interface design. Touches two or
more database entities. Between four
and seven steps. Its implementation
involves between five and 10 classes.

10 13 130

Complex Complex user interface or processing.
Touches three or more database
entities. More than seven steps. Its
implementation involves more than 10
classes.

15 3 45

Total UUCW 210

Table 2: Computing UUCW

Actor Type Description Weight

Simple The actor represents another system with a defined
application programming interface.

1

Average The actor represents another system interacting through a

protocol, like Transmission Control Protocol/Internet
Protocol.

2

Complex The actor is a person interacting via a graphical user
interface.

3

Table 3: Actor Classifications

Actor

Type

Description Weight Number

of

Actors

Result

Simple The actor represents another system
with a defined application
programming interface.

1 0 0

Average The actor represents another system
interacting through a protocol, like
Transmission Control Protocol/Internet
Protocol.

2 0 0

Complex The actor is a person interacting via an
interface.

3 4 12

Total UAW 12

Table 4: Computing UAW

Use Case Category Description Weight

Simple Simple user interface. Touches only a
single database entity. Its success
scenario has three steps or less. Its
implementation involves less than
five classes.

5

Average More interface design. Touches two
or more database entities. Between
four and seven steps. Its
implementation involves between
five and 10 classes.

10

Complex Complex user interface or
processing. Touches three or more
database entities. More than seven
steps. Its implementation involves
more than 10 classes.

15

Table 1: Use Case Categories

Use Case

Type

Description Weight Number

of Use

Cases

Result

Simple Simple user interface. Touches only a
single database entity. Its success
scenario has three steps or less. Its
implementation involves less than five
classes.

5 7 35

Average More interface design. Touches two or
more database entities. Between four
and seven steps. Its implementation
involves between five and 10 classes.

10 13 130

Complex Complex user interface or processing.
Touches three or more database
entities. More than seven steps. Its
implementation involves more than 10
classes.

15 3 45

Total UUCW 210

Table 2: Computing UUCW

Actor Type Description Weight

Simple The actor represents another system with a defined
application programming interface.

1

Average The actor represents another system interacting through a

protocol, like Transmission Control Protocol/Internet
Protocol.

2

Complex The actor is a person interacting via a graphical user
interface.

3

Table 3: Actor Classifications

Actor

Type

Description Weight Number

of

Actors

Result

Simple The actor represents another system
with a defined application
programming interface.

1 0 0

Average The actor represents another system
interacting through a protocol, like
Transmission Control Protocol/Internet
Protocol.

2 0 0

Complex The actor is a person interacting via an
interface.

3 4 12

Total UAW 12

Table 4: Computing UAW

Table 3: Actor Classifications

Use Case Category Description Weight

Simple Simple user interface. Touches only a
single database entity. Its success
scenario has three steps or less. Its
implementation involves less than
five classes.

5

Average More interface design. Touches two
or more database entities. Between
four and seven steps. Its
implementation involves between
five and 10 classes.

10

Complex Complex user interface or
processing. Touches three or more
database entities. More than seven
steps. Its implementation involves
more than 10 classes.

15

Table 1: Use Case Categories

Use Case

Type

Description Weight Number

of Use

Cases

Result

Simple Simple user interface. Touches only a
single database entity. Its success
scenario has three steps or less. Its
implementation involves less than five
classes.

5 7 35

Average More interface design. Touches two or
more database entities. Between four
and seven steps. Its implementation
involves between five and 10 classes.

10 13 130

Complex Complex user interface or processing.
Touches three or more database
entities. More than seven steps. Its
implementation involves more than 10
classes.

15 3 45

Total UUCW 210

Table 2: Computing UUCW

Actor Type Description Weight

Simple The actor represents another system with a defined
application programming interface.

1

Average The actor represents another system interacting through a

protocol, like Transmission Control Protocol/Internet
Protocol.

2

Complex The actor is a person interacting via a graphical user
interface.

3

Table 3: Actor Classifications

Actor

Type

Description Weight Number

of

Actors

Result

Simple The actor represents another system
with a defined application
programming interface.

1 0 0

Average The actor represents another system
interacting through a protocol, like
Transmission Control Protocol/Internet
Protocol.

2 0 0

Complex The actor is a person interacting via an
interface.

3 4 12

Total UAW 12

Table 4: Computing UAW

Table 4: Computing UAW

A New Twist on Today’s Technology

20 CROSSTALK The Journal of Defense Software Engineering February 2006

success. A value of 1 means the factor has
a strong, negative impact for the project; 3
is average; and 5 means it has a strong,
positive impact. A value of zero has no
impact on the project’s success. For exam-
ple, team members with little or no moti-
vation for the project will have a strong
negative impact (1) on the project’s suc-
cess while team members with strong
object-oriented experience will have a
strong, positive impact (5) on the project’s
success.

Each factor’s weight is multiplied by its
perceived impact to produce its calculated
factor. The calculated factors are summed
to produce the Environmental Total Factor.

Larger values for the Environment Total
Factor will have a greater impact on the UCP
equation.

Table 8 calculates the environmental
factors for the case study project.

To produce the final ECF, two con-
stants are computed with the
Environmental Total Factor. The con-

stants, “based on interviews with experi-
enced Objectory users at Objective
Systems” [1], constrain the impact the
ECF has on the UCP equation from 0.425
(Part-Time Workers and Difficult
Programming Language = 0, all other val-
ues = 5) to 1.4 (perceived impact all 0).
Therefore, the ECF can reduce the UCP
by 57.5 percent and increase the UCP by
40 percent.

The ECF has a greater potential impact on
the UCP count than the TCF. The formal
equation is:

ECF = C1 + C2

8

∑
i=1

Wi * F1

where,

Constant 1 (C1) = 1.4

Constant 2 (C2) = -0.03

W = Weight

F = Perceived Impact

Informally, the equation works out to be:

ECF = 1.4 +

(-0.03 * Environmental Total Factor)

For the sample case study, the author’s
software development experience resulted
in a high ETF. The most significant nega-
tive factor was the author’s lack of experi-
ence in the application domain.

For Table 8, the ECF = 1.4 + (-0.03
*26) = 0.62, resulting in a decrease of the UCP
by 38 percent.

Calculating the UCP
As a reminder, the UCP equation is:

UCP = UUCP * TCF * ECF

From the above calculations, the UCP
variables have the following values:

UUCP = 222

TCF = 0.795

ECF = 0.62

For the sample case study, the final UCP is
the following:

UCP = 222 * 0.795 * 0.62

UCP = 109.42 or 109 use case points

Note for the sample case study, the TCF and
ECF reduced the UUCP by approximately 49
percent (109/222*100).

By itself, the UCP value is not very
useful. For example, a project with a UCP
of 222 may take longer than one with a
UCP of 200, but we do not know by how
much. Another factor is needed to esti-
mate the number of hours to complete
the project.

PF
The PF is the ratio of development man-hours
needed per use case point. Statistics from past
projects provide the data to estimate the
initial PF. For instance, if a past project
with a UCP of 120 took 2,200 hours to
complete, divide 2,200 by 120 to obtain a
PF of 18 man-hours per use case point.

Estimated Hours
The total estimated number of hours for
the project is determined by multiplying
the UCP by the PF.

Total Estimate = UCP * PF

If no historical data has been collected,
consider two possibilities:
1. Establish a baseline by computing the

UCP for previously completed pro-
jects (as was done with the sample case
study in this article).

Technical

Factor

Description Weight

T1 Distributed System 2

T2 Performance 1

T3 End User Efficiency 1

T4 Complex Internal Processing 1

T5 Reusability 1

T6 Easy to Install 0.5

T7 Easy to Use 0.5

T8 Portability 2

T9 Easy to Change 1

T10 Concurrency 1

T11 Special Security Features 1

T12 Provides Direct Access for Third Parties 1

T13 Special User Training Facilities Are Required 1

Table 5: Technical Complexity Factors

Technical

Factor

Description Weight Perceived

Complexity

Calculated

Factor

(Weight*

Perceived

Complexity)

T1 Distributed System 2 1 2

T2 Performance 1 3 3

T3 End User Efficiency 1 3 3

T4 Complex Internal Processing 1 3 3

T5 Reusability 1 0 0

T6 Easy to Install 0.5 0 0

T7 Easy to Use 0.5 5 2.5

T8 Portable 2 0 0

T9 Easy to Change 1 3 3

T10 Concurrency 1 0 0

T11 Special Security Features 1 0 0

T12 Provides Direct Access for Third Parties 1 3 3

T13 Special User Training Facilities Are Required 1 0 0

Technical Total Factor 19.5

Table 6: Calculating the Technical Total Factor

Environmental

Factor

Description Weight

E1 Familiarity With UML* 1.5

E2 Part-Time Workers -1

E3 Analyst Capability 0.5

E4 Application Experience 0.5

E5 Object-Oriented Experience 1

E6 Motivation 1

E7 Difficult Programming Language -1

E8 Stable Requirements 2

*Note: Karner's original factor, "Familiar with Objectory," was changed to reflect the popularity of UML.

Table 5: Technical Complexity Factors

Technical

Factor

Description Weight

T1 Distributed System 2

T2 Performance 1

T3 End User Efficiency 1

T4 Complex Internal Processing 1

T5 Reusability 1

T6 Easy to Install 0.5

T7 Easy to Use 0.5

T8 Portability 2

T9 Easy to Change 1

T10 Concurrency 1

T11 Special Security Features 1

T12 Provides Direct Access for Third Parties 1

T13 Special User Training Facilities Are Required 1

Table 5: Technical Complexity Factors

Technical

Factor

Description Weight Perceived

Complexity

Calculated

Factor

(Weight*

Perceived

Complexity)

T1 Distributed System 2 1 2

T2 Performance 1 3 3

T3 End User Efficiency 1 3 3

T4 Complex Internal Processing 1 3 3

T5 Reusability 1 0 0

T6 Easy to Install 0.5 0 0

T7 Easy to Use 0.5 5 2.5

T8 Portable 2 0 0

T9 Easy to Change 1 3 3

T10 Concurrency 1 0 0

T11 Special Security Features 1 0 0

T12 Provides Direct Access for Third Parties 1 3 3

T13 Special User Training Facilities Are Required 1 0 0

Technical Total Factor 19.5

Table 6: Calculating the Technical Total Factor

Environmental

F

Description Weight

Table 6: Calculating the Technical Total Factor

Project Estimation With Use Case Points

February 2006 www.stsc.hill.af.mil 21

2. Use a value between 15 and 30
depending on the development team’s
overall experience and past accom-
plishments (Do they normally finish
on time? Under budget? etc.). If it is a
brand-new team, use a value of 20 for
the first project.
After the project completes, divide the

number of actual hours it took to com-
plete the project by the number of UCPs.
The product becomes the new PF.

Since the sample case study presented in this
article actually took 990 hours to complete, the
PF for the next project is: 990/109 = 9.08

Industry Case Studies
From the time Karner produced his initial
report in 1993, many case studies have
been accomplished that validate the rea-
sonableness of the UCP method.

In the first case study in 2001, Suresh
Nageswaran published the results of a
UCP estimation effort for a product sup-
port Web site belonging to large North
American software company [4].
Nageswaran, however, extended the UCP
equation to include testing and project
management coefficients to derive a more
accurate estimate.

While testing and project management
might be considered non-functional
requirements, nevertheless they can signif-
icantly increase the length of the project.
Testing a Java 2 Enterprise Edition imple-
mentation, for example, may take longer
than testing a Component Object Model
component; it is not unusual to spend sig-
nificant time coordinating, tracking, and
reporting project status.

Nageswaran’s extensions to the UCP equa-
tion produced an estimate of 367 man-days, a
deviation of 6 percent of the actual effort of 390
man-days.

In a recent e-mail exchange with this
author, Nageswaran said he had also
applied the UCP method to performance
testing, unit-level testing, and white box
testing.

In the second case study, research sci-
entist Dr. Bente Anda [5] evaluated the
UCP method in case studies from several
companies and student projects from the
Norwegian University of Science and
Technology that varied across application
domains, development tools, and team size.
The results are shown in Table 9.

For the above studies, the average UCP esti-
mate is 19 percent; the average expert estimate is
20 percent.

Additionally, at the 2005 International
Conference on Software Engineering,
Anda, et al. [6] presented a paper that
described the UCP estimate of an incre-
mental, large-scale development project

that was within 17 percent of the actual
effort.

In the third case study, Agilis Solutions
and FPT Software partnered to produce
an estimation method, based on the UCP
method that produces very accurate esti-
mates. In an article that was presented at
the 2005 Object-Oriented, Programming,
Systems, Languages, and Applications
conference, Edward R. Carroll of Agilis
Solutions stated:

After applying the process across
hundreds of sizable (60 man-
months average) software projects,
we have demonstrated metrics that
prove an estimating accuracy of less
than 9 percent deviation from actu-
al to estimated cost on 95 percent

of our projects. Our process and
this success factor are documented
over a period of five years, and
across more than 200 projects. [7]

To achieve greater accuracy, the Agilis
Solutions/FPT Software estimation method
includes a risk coefficient with the UCP equation.

Conclusion
An early project estimate helps managers,
developers, and testers plan for the
resources a project requires. As the case
studies indicate, the UCP method can pro-
duce an early estimate within 20 percent
of the actual effort, and often, closer to
the actual effort than experts and other
estimation methodologies [7].

Moreover, in many traditional estima-

Table 7: Environmental Complexity Factors

Technical Tota

Table 6: Calculating the Technical Total Factor

Environmental

Factor

Description Weight

E1 Familiarity With UML* 1.5

E2 Part-Time Workers -1

E3 Analyst Capability 0.5

E4 Application Experience 0.5

E5 Object-Oriented Experience 1

E6 Motivation 1

E7 Difficult Programming Language -1

E8 Stable Requirements 2

*Note: Karner's original factor, "Familiar with Objectory," was changed to reflect the popularity of UML.

Environmental

Factor

Description Weight Perceived

Impact

Calculated Factor

(Weight*Perceived

Complexity)

E1 Familiarity With UML 1.5 5 7.5

E2 Part-Time Workers -1 0 0

E3 Analyst Capability 0.5 5 2.5

E4 Application Experience 0.5 0 0

E5 Object-Oriented Experience 1 5 5

E6 Motivation 1 5 5

E7 Difficult Programming Language -1 0 0

E8 Stable Requirements 2 3 6

Environmental Total Factor 26

Table 8: Calculating the Environmental Total Factor

Company Project Use Case

Estimate

Expert

Estimate

Actual

Effort

Deviation

Use Case

Estimate

Deviation

Expert

Estimate

Mogel A 2,550 2,730 3,670 -31% -26%

Mogel B 2,730 2,340 2,860 -5% -18%

Mogel C 2,080 2,100 2,740 -24% -23%

CGE and Y A 10,831 7,000 10,043 +8% -30%

CGE and Y B 14,965 12,600 12,000 +25% +5%

IBM A 4,086 2,772 3,360 +22% -18%

Student Project A 666 742 -10%

Student Project B 487 396 +23%

Student Project C 488 673 -25%

Table 9: Use Case Studies

Table 8: Calculating the Environmental Total Factor
Environmental

Factor

Description Weight Perceived

Impact

Calculated Factor

(Weight*Perceived

Complexity)

E1 Familiarity With UML 1.5 5 7.5

E2 Part-Time Workers -1 0 0

E3 Analyst Capability 0.5 5 2.5

E4 Application Experience 0.5 0 0

E5 Object-Oriented Experience 1 5 5

E6 Motivation 1 5 5

E7 Difficult Programming Language -1 0 0

E8 Stable Requirements 2 3 6

Environmental Total Factor 26

Table 8: Calculating the Environmental Total Factor

Company Project Use Case

Estimate

Expert

Estimate

Actual

Effort

Deviation

Use Case

Estimate

Deviation

Expert

Estimate

Mogel A 2,550 2,730 3,670 -31% -26%

Mogel B 2,730 2,340 2,860 -5% -18%

Mogel C 2,080 2,100 2,740 -24% -23%

CGE and Y A 10,831 7,000 10,043 +8% -30%

CGE and Y B 14,965 12,600 12,000 +25% +5%

IBM A 4,086 2,772 3,360 +22% -18%

Student Project A 666 742 -10%

Student Project B 487 396 +23%

Student Project C 488 673 -25%

Table 9: Use Case Studies

Table 9: Use Case Studies

A New Twist on Today’s Technology

22 CROSSTALK The Journal of Defense Software Engineering February 2006

tion methods, influential technical and
environmental factors are not given
enough consideration. The UCP method
quantifies these subjective factors into
equation variables that can be tweaked over
time to produce more precise estimates.

Finally, the UCP method is versatile
and extensible to a variety of development
and testing projects. It is easy to learn and
quick to apply.

The author encourages more projects
to use the UCP method to help produce
software on time and under budget.u

References
1. Karner, Gustav. “Resource Estimation

for Objectory Projects.” Objective
Systems SF AB, 1993.

2. Albrecht, A.J. Measuring Application
Development Productivity. Proc. of
IBM Applications Development
Symposium, Monterey, CA, 14-17 Oct.
1979: 83.

3. Jacobson, I., G. Booch, and J. Rum-
baugh. The Objectory Development
Process. Addison-Wesley, 1998.

4. Nageswaran, Suresh. “Test Effort
Estimation Using Use Case Points.”
June 2001 <www.cognizant.com/cog
community/presentations/Test_
Effort_Estimation.pdf>.

5. Anda, Bente. “Improving Estimation
Practices By Applying Use Case
Models.” June 2003 <www.cognizant.
com/cogcommunity/presentations/
Test_Effort_Estimation.pdf>.

6. Anda, Bente, et al. “Effort Estimation
of Use Cases for Incremental Large-
Scale Software Development.” 27th
International Conference on Software
Engineering, St Louis, MO, 15-21 May
2005: 303-311.

7. Carroll, Edward R. “Estimating
Software Based on Use Case Points.”
2005 Object-Oriented, Programming,
Systems, Languages, and Applications
(OOPSLA) Conference, San Diego,
CA, 2005.

About the Author

Roy K. Clemmons is an
employee of Diversified
Technical Services, Inc.
He has more than 20
years experience in soft-
ware design and develop-

ment. Currently, he is contracted to the
Retrieval Applications Group at Ran-
dolph Air Force Base, Texas, where he
works on the Virtual Military Personnel
Flight system and the Retrieval Appli-
cations Web site.

Diversified Technical Services, Inc.
403 E Ramsey STE 202
San Antonio,TX 78216
Phone: (210) 565-1119
E-mail: roy.clemmons.ctr@

randolph.af.mil

Get Your Free Subscription

Fill out and send us this form.

309 SMXG/MXDB

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:
OCT2004 c PROJECT MANAGEMENT

NOV2004 c SOFTWARE TOOLBOX

DEC2004 c REUSE

JAN2005 c OPEN SOURCE SW
FEB2005 c RISK MANAGEMENT

MAR2005 c TEAM SOFTWARE PROCESS

APR2005 c COST ESTIMATION

MAY2005 c CAPABILITIES

JUNE2005 c REALITY COMPUTING

JULY2005 c CONFIG. MGT. AND TEST

AUG2005 c SYS: FIELDG. CAPABILITIES

SEPT2005 c TOP 5 PROJECTS

OCT2005 c SOFTWARE SECURITY

NOV2005 c DESIGN

DEC2005 c TOTAL CREATION OF SW
JAN2006 c COMMUNICATION

To Request Back Issues on Topics Not
Listed Above, Please Contact <stsc.
customerservice@hill.af.mil>.

Hard Skills Simulations:
Tackling Defense Training

Challenges Through
Interactive 3-D Solutions

Josie Simpson
NGRAIN Corporation

The defense industry today faces a num-
ber of challenges around skills training,
primarily driven by an increased pace of
operations, the growing need to cross-
train technical personnel to meet mission
objectives, and ever-shrinking training
budgets. Combined, these challenges can
be daunting; but they can be overcome
through the insertion of advanced tech-
nologies in instructional programs. Until

recently, the use of three-dimensional (3-
D) in hard skills training was limited to
high-end applications such as flight simu-
lators. Today, new technologies have been
introduced that remove the traditional
barriers to 3-D, allowing interactive 3-D
to be used in lower-end applications,
including maintenance training. Hard
skills simulations, most notably 3-D vir-
tual equipment, provide an innovative
new way to cost-effectively train students
to standard in less time on maintenance
procedures and repair tasks, while simul-
taneously helping to improve perfor-
mance in the field through on-the-job
training aids. The result is reduced costs
and a higher level of preparedness, ulti-
mately saving lives.

MORE ONLINE FROM CCRROOSSSSTTAALLKK

ThCrossTalk is pleased to bring you this additional article with full text at
<www.hill.af.mil/crosstalk/2006/02/index.html>.

February 2006 www.stsc.hill.af.mil 23

The purpose of this article is to present
an unbiased comparison of three

approaches to estimating software devel-
opment costs. Rather than a single author
attempting to arrive at a middle of the
road, politically correct description of the
three approaches, this article presents the
comparison according to three individuals
who are at the heart of these major esti-
mating philosophies (from the horses’
mouths so to speak).

Origins and Evolution of
Software Models
This article prompted an enlightening trip
back into the fuzzy history of computer-
based software cost and schedule estimat-
ing methods and tools. It appears that the
origins are not that remote, and the meth-
ods appeared over a relatively short period
of time and have evolved in spurts and
starts since then. The first real contribu-
tion to the estimating technology hap-
pened in 1958 with the introduction of
the Norden staffing profile [1]. This pro-
file has been incorporated in many of the
estimating methodologies introduced
since then.

A flurry of software estimating meth-
ods was introduced beginning in the mid-
1970s and throughout the next decade.
The first publication of any significance
was presented by Ray Wolverton [2] of
TRW in 1974. Wolverton was a major
contributor to the development of the
Constructive Cost Model (COCOMO)
[3]. The second major contribution to the
evolution of software estimating tools was
the Doty Associates model [4], developed
for the U.S. Air Force in 1977. The period
from 1974 through 1981 brought most of
the software estimating models (tools) we
use today to the marketplace.

Each of these tools evolved at a gentle
pace (refined algorithms and drivers) until
about 1995, when significant changes
were made to many of the models.
COCOMO II, for example, had several
releases between 1995 and 1999. Sage,

released in 1995, is a major redefinition of
the 1979 Seer model. Cost Xpert, intro-
duced in 1996, is a major modification of
the COCOMO family line. It is amazing
that, in the 25 years elapsed since the first
wave of estimating tools, development
environments have changed so little that
these models and their predicted environ-
ments are still valid today.

Framework for Discussion
When we look at software estimating
models, they generally fall into one of
three classes: first-, second- or third-order
forms. This article compares three widely
used models using the three classes as a
framework for discussion and compari-
son.

First-Order Model
The first-order model is the most rudi-
mentary model class. The model is simply
a productivity constant, defining the pro-
duction capability of the development
organization in terms of arbitrary produc-
tion units multiplied by the software prod-
uct effective size to obtain the develop-
ment effort or cost. The production units
can be source lines of code (SLOC), func-
tion points (FPs), object points, use cases,
and a host of other units. For the purpose
of this discussion, we will use effective
source lines of code (ESLOC) as the pro-
duction measure, and person-hours per
ESLOC as the productivity measure. This
can be stated as follows:

Ed = CkSe (1)

where,

Ed is the development effort in person

hours (ph).

Ck is a productivity factor (ph/esloc).

Se is the number of ESLOC.

The productivity factor is commonly
determined by the product type, historic
developer capability, or both as derived

from past projects. As simple as this equa-
tion is, it is widely used to produce high-
level, rough estimates. An expansion of
this form used as far back as the 1970s is:

Ed = Ck(Snew + 0.75Smodified + 0.2Sreused) ph (2)

Or it is a similar variation. The weakness
of this model is its insensitivity to the
magnitude of the effective product size.
Productivity is, or at least should be,
decreased for larger projects.

Second-Order Model
The second-order model compensates for
the productivity decrease in larger projects
by incorporating an entropy factor to
account for the productivity change. The
entropy effect demonstrates the impact of
a large number of communications paths
that are present in large development
teams. The number of paths is specified
by n(n-1)/2 where n is the number of
development personnel. The second-
order model becomes the following:

Ed = CkSß
e (3)

where,

ß is an entropy factor that accounts for

the productivity change as a function of

effective product size.

An entropy factor value of 1.0 repre-
sents no productivity change with size. An
entropy value of less than 1.0 shows a
productivity increase with size, and a value
greater than 1.0 represents a productivity
decrease with size. Entropy values of less
than 1.0 are inconsistent with historical
software data1. Most of the widely used
models in the 1980s (COCOMO embed-
ded mode, PRICE-S, REVIC, Seer, and
SLIM) used entropy values of approxi-
mately 1.2 for Department of Defense
projects.

The major weakness of this model is

Software Estimating Models: Three Viewpoints

William Roetzheim
Cost Xpert Group, Inc.

This article compares the approaches taken by three widely used models for software cost and schedule estimation. Each of the
models is compared to a common framework of first-, second-, and third-order models to maintain consistency in the com-
parisons. The comparisons illustrate significant differences between the models, and show significant differences in the
approaches used by each of the model classes.

Software Engineering Technology

Dr. Randall W. Jensen
Software Technology Support Center

Lawrence H. Putnam Sr.
Quantitative Software Management, Inc.

Software Engineering Technology

its inability to adjust the productivity fac-
tor to account for variations between pro-
jects in development environments. For
example, contractor A may have a more
efficient process than contractor B; how-
ever, contractor A may be using a devel-
opment team with less experience than
used in the historic productivity factor.
Different constraints may be present in
the current development than was present
in previous projects. In addition, using a
fixed, or calibrated, productivity factor
limits the model’s application across a
wide variety of environments.

Third-Order Model
The third-order model compensates for
the second-order model’s narrow applica-
bility by incorporating a set of environ-
ment factors to adjust the productivity
factor to fit a larger range of problems.
The form of this model is as follows:

Ed = Ck (

n

∏∏
i=1

fi)S
ß
e (4)

where,

fi is the ith environment factor.

n is the number of environment factors.

The number of environment factors
varies across estimating models, and is
typically between 15 and 32.

Using the generalized model set
defined in equations (1) through (4), we
have a framework for comparing the defi-
nition and features of the software esti-
mating models. Three model types are
described and compared in the following
sections of this article: (1) models evolv-
ing from the 1979 Seer model developed
and described by Dr. Randall Jensen, (2)
models evolving from the COCOMO
model described by William Roetzheim,
and (3) the SLIM model developed and
described by Lawrence Putnam, Sr.

Sage/Seer Effort and Schedule
Calculations
Software development involves three
important elements: people, a process, and
a product. The people element describes
management approach and style as well as
personnel attributes, including capability,
motivation, and communication effective-

ness. Process represents the software
development approach, tools, practices,
and life-cycle definition. The product
attributes include project-imposed con-
straints such as development standard,
memory and time constraints, and securi-
ty issues.

Software development is the most
communication-intensive of all engineer-
ing processes. This unique software
process characteristic suggests significant
productivity gains are more likely to be
realized through communication improve-
ment, rather than through technology.
Communication effectiveness is deter-
mined by organizational structure, man-
agement approach, and development envi-
ronment. The Jensen model [5], and its
implementations, embodies the impacts of
the three important elements in software
development cost and schedule estimates.

This section of the article discusses
the underlying theory of a line of software
cost and schedule estimating tools that
evolved from the Jensen software model
[6] at Hughes Aircraft Company’s Space
and Communications Group in 1979. The
original model implementation was called
Seer (not an acronym), a name later con-
verted to the acronym SEER-SEM
(Software Evaluation and Estimation of
Resources-Software Estimating Model) [7]
and trademarked by Galorath Associates,
Inc. (GAI) in 1990. The Seer concepts
were influenced by Lawrence Putnam’s
work [8] published in 1976 and the Doty
Associates [9] estimating model published
in 1977. The Seer model was derived from
the U.S. Army data used by Putnam to
develop SLIM, but with a different inter-
pretation of the data itself.

The first major update to the Jensen
model came in 1995 (Jensen II) with the
addition of project management and per-
sonnel characteristics effects to the model.
The impacts of motivation, management
style, and teaming on productivity have
long been suspected, but until 1995 the
data to support the alleged behavior was
simply insufficient to make credible model
changes. These changes were implement-
ed in the Software Engineering, Inc., Sage
[10] software estimating system. For the
sake of brevity, the Jensen model (I and
II) will be referred to as Sage throughout

this discussion. The following discussion
applies to all descendants of the original
Jensen estimating model. The fundamen-
tal equations are the following:

Se = Cte √KTd (5)

and

D =
K__

T3
d

(6)

where,

Cte is the effective technology constant of

the development activity.

K is the total life-cycle effort in person-

years (py) of the software development

starting with the software requirements

review through the software’s end of life.

Td is the software product development

time in years.

D is the product complexity rating.

Equations (5) and (6) solved simulta-
neously provide both schedule and effort
estimates in one calculation with the rela-
tionship between effort and schedule
linked by the product complexity. This
approach is unique to the Jensen and
Putnam models.

The parameter D is the same as the
Difficulty parameter discovered by Putnam.
This explains the use of D to describe
what the Jensen model refers to as com-
plexity.

Development effort is defined by

Ed = 0.3945K

where,

Ed is the development effort in py through

the final qualification test.

The Sage software development effort
equation is an implementation of the
third-order model discussed in the intro-
duction to the model comparison even
though it is not immediately apparent.
Combining equations (5) and (6), we find
the following:

Ed =
18,797D0.4

C1.2

te

S1.2
e person months (pm) (7)

The ugly part of equation (7) preced-
ing the effective size element comprises
the productivity factor of the third order
model. The effective technology constant
Cte contains two components: (1) the basic
technology constant Ctb representing the
development organization’s raw capability;
that is, capability independent of the con-
straints imposed by a specific develop-

24 CROSSTALK The Journal of Defense Software Engineering February 2006

Definition Highly

motivated

AND

experienced

team

organization

Highly

motivated

OR

experienced

team

organization

Traditional

software

development

organization

Poorly

motivated

OR non-

associative

organization

Poorly

motivated

AND non-

associative

organization

Relative cost impact 0.71 0.86 1.00 1.19 1.46

Table 1: Sage Analyst Capability Ratings

Figure 1: Paul Masson Rule

eS
kesloc

D
tbC teC dE . pm dT mo

Productivity,

sloc/pm

59.4 12 7,606 2,624 538.7 25 110

Table 2: Example Estimate

C
O
S
T

• PAUL MASSON POINT

Minimum
Development

Time

SCHEDULE

Table 1: Sage Analyst Capability Ratings

Software Estimating Models:Three Viewpoints

February 2006 www.stsc.hill.af.mil 25

ment, and (2) the impacts of 24 environ-
ment factors/constraints. The Cte value is
obtained from the following:

Cte =
Ctb

24

¹
i=1

fi (8)

where,

Ctb represents the basic technology con-

stant.

fi is the ith product-impacted environment

factor.

The Ctb value can be anywhere between
2,000 and 20,000 with a normal range
between 5,500 and 7,500. The highest
value observed from available data at this
time is about 8,635. Higher values obvi-
ously imply higher productivity and effi-
ciency. Theoretical values of Cte range
from 0 through 20,000. The practical
upper Cte limit is defined by an organiza-
tion’s rating. The practical lower Cte

bound is about 500 for a less-than-aver-
age organization and severe product con-
straints.

The relative cost impact of the analyst
capability rating for Sage is shown in Table
1 as an example of one of the 24 envi-
ronment factors.

The product development time Td is
the minimum development time as can be
seen from the Paul Masson cost-time rela-
tionship shown in Figure 1. The Paul
Masson Point represents the minimum
development time that can be achieved
with a specified size, environment, and
complexity. By attempting to reduce the
schedule below the minimum time, the
cost will increase and the schedule will
also increase as described by Brooks Law
[11]: “Adding people to a late software
project makes it later.” Sage computes the
minimum development schedule as a
default.

The region shown by the double-head-
ed arrow is represented as a square-law
relationship in the model between cost
and schedule, or c = KT2

d. At first glance it
seems that a longer schedule should
equate to higher cost. By explaining the
phenomenon in two logical steps, the pro-
ductivity gain over the region becomes
clear. A longer schedule requires a smaller
development team. A smaller team is
more efficient; thus, productivity
improves and the cost decreases. This
phenomenon applies until the productivi-
ty gain is eaten up by fixed costs.

As an example of the effort and
schedule predicted by Sage, let us assume
the following development project para-

meters: The product is a satellite mission
operations system (application with signif-
icant logical complexity with some
changes to the underlying operating sys-
tem) consisting of 59,400 new SLOC. A
basic technology rating of 7,606 places
the developer at the upper end of the typ-
ical capability range. The project environ-
ment constraints, including the Institute
of Electrical and Electronics Engineers
Standard 12207 development standard,
reduce the effective technology rating to
2,624. The third-order equation form of
equation (7) reduces to Ed = 4.007S1.2

e . The
results are tabulated in Table 2.

The minimum development schedule,
which is simultaneously calculated in
equation (5), is approximately 25 months.

Quantitative Software
Management View of Software
Estimating and Productivity
Measurement
Productivity measurement is used to:
1. Tune estimating systems.
2. Baseline and measure progress in soft-

ware development.
But what is productivity? My answer is:

It is not SLOC/PM or FP/PM. This is the
traditional view from economic theory –
output/input.

The software industry has 35 years of
experience that shows that this ratio
works poorly as a productivity metric. At
Quantitative Software Management
(QSM), we have learned why it does not
work: because it ignores schedule, and
software development is very sensitive to
schedule. A vast amount of our 27-year
collection of data, some 6,600 completed
systems, coupled with empirical analysis
shows that schedule is the most impor-
tant factor in estimating relationships and
must be dealt with explicitly. If schedule
is not so recognized and dealt with, then
it will assert itself implicitly and cause
much grief. By this, I mean both time and
effort must be included multiplicatively in
an expression for a good software algo-
rithm. We have found this to be of the
conceptual form:

Amount of function = Effort *

Schedule * Process Productivity (9)

where,

Effort and Schedule have exponents.

Specifically,

Size = (Effort/ßeta)1/3 Schedule4/3 Process

Productivity Parameter (10)

where,

Size is the size in SLOC, or other mea-

sure of amount of function.

Effort is the amount of development effort

in py.

ßeta is a special skills factor that varies

as a function of size from 0.16 to 0.39.

ßeta has the effect of reducing process

productivity, for estimating purposes, as

the need for integration, testing, quality

assurance, documentation, and manage-

ment skills grows with increased com-

plexity resulting from the increase in size.

Schedule is the development time in

years.

Process Productivity Parameter is the

productivity number that we use to tune

the model to the capability of the organi-

zation and the difficulty of the application.

We do this by calibration as explained in

the next section. The theoretical range of

values is from 610 to 1,346,269. The

range of values seen in practice across

all application types is 1,974 to 121,393

and varies exponentially.

Estimating and Tuning Models
All models need tuning to moderate the
productivity adjusting factor.
• Some models use effort multipliers or

modifiers.
• I have found that we can use the soft-

ware equation to calibrate our estimat-

Definition Highly

motivated

AND

experienced

team

organization

Highly

motivated

OR

experienced

team

organization

Traditional

software

development

organization

Poorly

motivated

OR non-

associative

organization

Poorly

motivated

AND non-

associative

organization

Relative cost impact 0.71 0.86 1.00 1.19 1.46

Table 1: Sage Analyst Capability Ratings

Figure 1: Paul Masson Rule

eS
kesloc

D
tbC teC dE . pm dT mo

Productivity,

sloc/pm

59.4 12 7,606 2,624 538.7 25 110

Table 2: Example Estimate

C
O
S
T

• PAUL MASSON POINT

Minimum
Development

Time

SCHEDULE

Figure 1: Paul Masson Rule

Definition Highly

motivated

AND

experienced

team

organization

Highly

motivated

OR

experienced

team

organization

Traditional

software

development

organization

Poorly

motivated

OR non-

associative

organization

Poorly

motivated

AND non-

associative

organization

Relative cost impact 0.71 0.86 1.00 1.19 1.46

Table 1: Sage Analyst Capability Ratings

Figure 1: Paul Masson Rule

eS
kesloc

D
tbC teC dE . pm dT mo

Productivity,

sloc/pm

59.4 12 7,606 2,624 538.7 25 110

Table 2: Example Estimate

C
O
S
T

• PAUL MASSON POINT

Minimum
Development

Time

SCHEDULE

Table 2: Example Estimate

Software Engineering Technology

26 CROSSTALK The Journal of Defense Software Engineering February 2006

ing algorithm. This calibration process
is far more accurate than intelligent
guesses of the settings for effort mul-
tipliers because it is based on real data
from the development organization.
All we need to do is to rearrange the
software equation into this form:

Process Productivity Parameter =

Size / ((Effort/ßeta)1/3 (Schedule4/3)) (11)

From historic projects we know the
size (SLOC, FPs, etc.), effort (py) and
schedule (years). Then just put in a consis-
tent set of historic numbers and we can
calculate a Process Productivity
Parameter. This works well. Note that the
expression for Process Productivity
Parameter includes schedule and that it is
multiplicatively tied to effort. This expres-
sion is our definition of software produc-
tivity.

This software equation has two vari-
ables that we want to solve for: schedule
and effort. That means we have to have
another equation to get a solution in the
form of a schedule-effort pair. The sec-
ond equation may be in the form of a
constraint like maximum budget for the
project (Maximum Development Effort =
Maximum Cost/$Average Burdened
Labor Rate), or, Maximum Schedule =
Maximum Development Time in years.
There are a number of other constraints
that can be used such as peak manpower,
or maximum manpower buildup rate
(defined as Difficulty in Randall Jensen’s

preceding section).

Example of an Estimate
Here is a simple example: We need an esti-
mate for a Global Positioning System nav-
igation system for an air-launched, land-
attack missile. We have completed the
high-level design phase. Estimated size is
40,000 C++ SLOC; Process Productivity
Parameter for this class of work (real time
avionic system) is 3,194 [taken from Table
14.8, in 12], ßeta = 0.34 [taken from Table
14.4, in 13]. We have to deliver the system
to the customer for operational service in
two years (24 months from the end of
high-level design) The fully burdened con-
tractor labor rate is $200,000 per person-
year. Substituting in the software equation
and solving for effort, we have the follow-
ing:

40,000 = (Effort/0.34)1/3 24/3 3,194

Effort = 41.74 PY (Approximately 500.9

pm)

Cost = $200,000/ PY * 41.74 PY

= $8.35 million

Observations Concerning Effort
Multipliers/Moderators
Many estimating systems use a family of
adjusting factors to try to tune their pro-
ductivity constant. Between 15 and 25 of
these tweekers are typical. The values are
picked from a scale centered on 1.0 that
increase or decrease the Productivity con-
stant. This process does moderate the
baseline productivity value.

Unfortunately, it is highly subjective –
dependent upon the judgment of the
practitioner. It is not consistent or repro-
ducible from person to person and hence
it introduces considerable uncertainly
into the estimate that follows.

At QSM, we use a family of tweekers
for tools and methods, technical com-
plexity of the project, competence, expe-
rience, and skill of the development
team. This list is similar to most other
estimating systems. But we use it only as
a secondary technique for those organiza-
tions that truly have no historic data. The
notion of calibration from historic data is
much more accurate and powerful
because it captures the real capability and
character of the development organiza-
tion in a single number – the Process
Productivity Parameter in the software
equation. This single number is unam-
biguous and consistent; there is no sub-
jectivity involved.

Benchmarking
One of the nice things about being able
to substitute your historical data into the
software equation is that you can calculate
an unambiguous number that can be used
for benchmarking. We transform the
Process Productivity into a linear scale
and call that a Productivity Index (PI). If
we collect a homogeneous set of data
from a development organization and cal-
culate the PI for each project, we see a
fairly normal distribution with a central
tendency.

The central tendency represents our
current average PI. If we keep track of all
our projects over time and if we are doing
process improvement (trying to move up
the SEI scale) then we will see an increase
in the PI over time. Often we can plot the
PI behavior over time and pick up the
trend. Moreover, this graphical approach
makes it easy to compare organizations
doing similar types of work. Extending
this thinking a little bit provides the abili-
ty to quantitatively compare the real capa-
bility of bidders on a software develop-
ment contract. This comparison process
takes a lot of guesswork out of trying to
determine the real capability of vendors.

The benchmarking idea can be
extended easily to show performance
capabilities of the development organiza-
tion. The idea is to take a fairly large body
of contemporaneous historic data from
the same industry sector, then generate
some trend lines plots of the generic
form: management metric (schedule,
effort, staffing, defects, etc.) versus size
(SLOC, FPs, objects, etc.). Next, superim-
pose data points from the development

Project Effort vs Effective SLOC

10 100 1,000

Effective SLOC (thousands)

1

10

100

1,000

10,000

100,000

P
ro

je
c
t E

ffo
rt (P

M
)

Less Effort Compared

to C&C Industry Trend Lines

Less Effort Compared

to C&C Industry Trend Lines

Productivity Index vs Effective SLOC

10 100 1,000

Effective SLOC (thousands)

0

5

10

15

20

25

P
ro

d
u

c
tiv

ity
 In

d
e

x

Higher Productivity Compared

to C&C Industry Trend Lines

Higher Productivity Compared

to C&C Industry Trend Lines

Project Schedule vs Effective SLOC

10 100 1,000

Effective SLOC (thousands)

1

10

100

P
ro

je
c
t S

c
h

e
d

u
le

 (M
o

n
th

s
)

Less Schedule Compared

to C&C Industry Trend Lines

Less Schedule Compared

to C&C Industry Trend Lines

Mean Time To Defect vs Effective SLOC

10 100 1,000

Effective SLOC (thousands)

0.1

1

10

100

1,000

M
T

T
D

 (h
o

u
rs

)

Higher Reliability Compared

to C&C Industry Trend Lines

Higher Reliability Compared

to C&C Industry Trend Lines

Average Trend for

Command & Contol Systems

Project Effort vs Effective SLOC

10 100 1,000

Effective SLOC (thousands)

1

10

100

1,000

10,000

100,000

P
ro

je
c
t E

ffo
rt (P

M
)

Less Effort Compared

to C&C Industry Trend Lines

Less Effort Compared

to C&C Industry Trend Lines

Productivity Index vs Effective SLOC

10 100 1,000

Effective SLOC (thousands)

0

5

10

15

20

25

P
ro

d
u

c
tiv

ity
 In

d
e

x

Higher Productivity Compared

to C&C Industry Trend Lines

Higher Productivity Compared

to C&C Industry Trend Lines

Project Schedule vs Effective SLOC

10 100 1,000

Effective SLOC (thousands)

1

10

100

P
ro

je
c
t S

c
h

e
d

u
le

 (M
o

n
th

s
)

Less Schedule Compared

to C&C Industry Trend Lines

Less Schedule Compared

to C&C Industry Trend Lines

Mean Time To Defect vs Effective SLOC

10 100 1,000

Effective SLOC (thousands)

0.1

1

10

100

1,000

M
T

T
D

 (h
o

u
rs

)

Higher Reliability Compared

to C&C Industry Trend Lines

Higher Reliability Compared

to C&C Industry Trend Lines

Average Trend for

Command & Contol Systems

Project Effort vs Effective SLOCProject Effort vs Effective SLOC

10 100 1,000

Effective SLOC (thousands)

1

10

100

1,000

10,000

100,000

10 100 1,000

Effective SLOC (thousands)

P
ro

je
c
t E

ffo
rt (P

M
)

Less Effort Compared

to C&C Industry Trend Lines

Less Effort Compared

to C&C Industry Trend Lines

Productivity Index vs Effective SLOC

Less Effort Compared

to C&C Industry Trend Lines

Less Effort Compared

to C&C Industry Trend Lines

Productivity Index vs Effective SLOC

10 100 1,000

Effective SLOC (thousands)

0

5

10

15

20

25

P
ro

d
u

c
tiv

ity
 In

d
e

x

10 1,000

Effective SLOC (thousands)

0

5

10

15

20

25

P
ro

d
u

c
tiv

ity
 In

d
e

x

Higher Productivity Compared

to C&C Industry Trend Lines

Higher Productivity Compared

to C&C Industry Trend Lines

Project Schedule vs Effective SLOC

Higher Productivity Compared

to C&C Industry Trend Lines

Higher Productivity Compared

to C&C Industry Trend Lines

Project Schedule vs Effective SLOC

10 100 1,000

Effective SLOC (thousands)

1

10

100

P
ro

je
c
t S

c
h

e
d

u
le

 (M
o

n
th

s
)

10 100 1,000

Effective SLOC (thousands)

1

10

100

P
ro

je
c
t S

c
h

e
d

u
le

 (M
o

n
th

s
)

Less Schedule Compared

to C&C Industry Trend Lines

Less Schedule Compared

to C&C Industry Trend Lines

Mean Time To Defect vs Effective SLOC

Less Schedule Compared

to C&C Industry Trend Lines

Less Schedule Compared

to C&C Industry Trend Lines

Mean Time To Defect vs Effective SLOC

10 100 1,000

Effective SLOC (thousands)

0.1

1

10

100

1,000

10 100 1,000

Effective SLOC (thousands)

0.1

1

10

100

1,000

M
T

T
D

 (h
o

u
rs

)

Higher Reliability Compared

to C&C Industry Trend Lines

Higher Reliability Compared

to C&C Industry Trend Lines

Average Trend for Command

and Contol Systems

Figure 2: Trend Lines Plots

Developer Completed Projects Compared to

QSM Command and Control System Trend Lines

Project Effort vs Effective SLOC

Effective SLOC (thousands)

Project Schedule vs Effective SLOC

P
ro

je
c
t E

ffo
rt (P

M
)

Productivity Index vs Effective SLOC

P
ro

d
u

c
tiv

ity
 In

d
e

x

Effective SLOC (thousands)

Mean Time to Defect vs Effective SLOC

M
T

T
D

 (h
o

u
rs

)

Effective SLOC (thousands)Effective SLOC (thousands)

P
ro

je
c
t S

c
h

e
d

u
le

 (M
o

n
th

s
)

Figure 2: Trend Lines Plots

organization being measured on top of
these trend lines and see how they position
(high or low) compared with the industry
average trend line at the appropriate size.
For example, if your data shows a pattern
of falling below the average line for effort,
schedule, and defects you are a more effec-
tive producer (high productivity develop-
er). Almost invariably your PI and Mean
Time to Defect (MTTD) will be higher as
well. This means you can unambiguously
and quantitatively measure productivity.
After nearly 30 years of experience doing
it, we know it works consistently and well.
An example of such plots is shown in
Figure 2.

Cost Xpert Effort and
Schedule Calculations
Algorithmically, Cost Xpert started with
the COCOMO models, added Revised
Intermediate COCOMO (REVIC) exten-
sions, and then layered functionality on
top of this base. The core approach of
Cost Xpert is as follows:
1. Define scope using various measures

of size (e.g., SLOC, FPs, class-method
points, user stories, many others) for
new development, reused code, and
commercial off-the-shelf (COTS)
components).

2. Use scope and a variety of adjusting
factors (addressed below) to calculate
effort.

3. Use effort to calculate optimal sched-
ule.

4. Feedback deviations from the optimal
schedule to adjust effort, if necessary.

First-Order Modeling in Cost Xpert
First order modeling involves linear calcu-
lations of effort using a productivity con-
stant:

Effort = Productivity * Size (12)

In Cost Xpert, all sizing metrics
(SLOC, FPs, class-method points, user
stories, etc.) and development stage (new,
reused, COTS) are normalized to a SLOC
equivalent. This SLOC equivalent is
defined such that it is valid for estimating
effort, although in some situations it may
not accurately represent physical lines of
code (for example, in environments where
much of the code is auto-generated). In
other words, although it once represented
physical lines of code calculated using an
approach called backfiring, and although
that relationship is still true for older
development environments, with newer
environments it has become more of an
estimating size proxy.

COCOMO and REVIC use(d) rela-
tively small databases of projects and have
a correspondingly small universe of pro-
ductivity numbers. For example, COCO-
MO II uses the value 2.94 person-months
per thousand SLOC (KSLOC) [14].
Commercial vendors, including the Cost
Xpert Group, are able to maintain much
larger databases of projects and hence can
segment those databases into a finer gran-
ularity of project classes, each with a cor-
responding productivity number.

Cost Xpert uses a project type variable
to denote the nature of the project (e.g.,
military, commercial, and internet) and set
the coefficient for given historic database
segments. Actual numbers for these sam-
ple project classes are shown in Table 3
[15]. The productivity number multiplied
by KSLOC yields the first order effort in
person-months.

However, Cost Xpert Group research
has determined that there are additional
sources of variation across projects and
project domains (see the Third-Order
Modeling section for examples). Our cali-
brations account for the additional
sources of variation and therefore pro-
duce different coefficients for given pro-
ject classes than the models with reduced
factor sets. The overall net productivity in
Cost Xpert thus accounts for second-
order and third-order modeling described
in the following sections.

Second-Order Modeling in Cost
Xpert
Second-order modeling in Cost Xpert
involves adjusting the productivity to
allow for economies or diseconomies of
scale. An economy of scale indicates that
the productivity goes up as the scope goes
up. For example, you would expect that it
is cheaper per yard to install 100,000 yards
of carpeting than 1,000 yards. A disecon-
omy of scale indicates that the productiv-
ity goes down as the scope goes up. In
software, we are dealing with disec-
onomies (larger projects are less efficient).
This is modeled by raising the size to a
power, with a power greater than 1.0
increasing the apparent scope, and thereby
effort, with increasing project size. The
second-order model looks like this:

Effort = Productivity Factor *

SizeScaling Factor (13)

Table 4 shows some scaling factors by
project type.

Third-Order Modeling in Cost Xpert
Third-order modeling in Cost Xpert
involves adjusting the productivity and

scaling factors by project-specific vari-
ables. Cost Xpert uses 32 variables, called
environment variables (E) to adjust the
productivity number up or down, and five
variables, called scaling variables (S) to
adjust the scaling factor up or down. Each
variable is set to a value ranging from very
low to extremely high using defined crite-
ria for each setting. Many of these vari-
ables will typically be fixed at a given value
for an organization, with only a handful
actually varying from project to project.
The total productivity factor adjustment
(PFA) is the product of the individual pro-
ductivity factor values.

PFA = ∏∏ E (14)

Table 5 (see page 28) shows some sam-
ple environmental variables and the resul-
tant PFAs as a sample of how this works.

The higher the number, the more
effort required to deliver the same
KSLOC, so in the Table 5 sample the
commercial product would require less
effort per KSLOC than the military pro-
ject.

Additionally, Cost Xpert has intro-
duced different types of linear factors
for important sources of effort variation.
We find that much of the variance
between project classes (e.g., military ver-
sus commercial) can be accounted for by
the life cycles and standards typically
employed. We have introduced the fol-
lowing factors:
• Project Life Cycle: The life cycle

(template of activities, or work break-
down structure) used for develop-
ment).

• Project Standard: The deliverables
(engineering specifications, or arti-
facts) produced during development.
These factors are rated by selecting

named life cycles and standards, which are
different than rating the standard environ-
mental variables. In addition to adjusting

Software Estimating Models:Three Viewpoints

February 2006 www.stsc.hill.af.mil 27

Project Type Productivity Factor

(pm/KSLOC)

Military 3.97

Commercial 2.40

Internet 2.51

Table 3: Productivity Factors

Project Type Scaling Factor

Military, Complex 1.197

Military, Average 1.120

Military, Simple 1.054

Commercial 1.054

Table 4: Scaling Factors for Various Project Types

Required Reliability

(E)

Multi-Site

Development (E)

Security

Classification (E)

Net

Productivity

(PFA)

Military Very High 1.26 Nominal 1.00 High 1.10 1.386

Commercial Nominal 1.00 Very High 0.86 Nominal 1.00 0.86

Table 5: Sample Productivity Factor Adjustments

Life Cycle and

Multiplier

Standard and

Multiplier

Net

Productivity

Sample 1 Waterfall 1.01 Military-498 1.34 1.35

Sample 2 RAD 0.91 RAD 0.51 0.46

Project Type ß

Military 3.80 0.378

α

Commerical 2.50 0.3348

Table 3: Productivity Factors

Project Type Productivity Factor

(pm/KSLOC)

Military 3.97

Commercial 2.40

Internet 2.51

Table 3: Productivity Factors

Project Type Scaling Factor

Military, Complex 1.197

Military, Average 1.120

Military, Simple 1.054

Commercial 1.054

Table 4: Scaling Factors for Various Project Types

Required Reliability

(E)

Multi-Site

Development (E)

Security

Classification (E)

Net

Productivity

(PFA)

Military Very High 1.26 Nominal 1.00 High 1.10 1.386

Commercial Nominal 1.00 Very High 0.86 Nominal 1.00 0.86

Table 5: Sample Productivity Factor Adjustments

Life Cycle and

Multiplier

Standard and

Multiplier

Net

Productivity

Sample 1 Waterfall 1.01 Military-498 1.34 1.35

Sample 2 RAD 0.91 RAD 0.51 0.46

Project Type ß

Military 3.80 0.378

α

Commerical 2.50 0.3348

Table 4: Scaling Factors for Various Project
Types

effort, the life cycle and standard are used
to create specific detailed project plans
and page size estimates. They are also used
in our defect model. Examples using actu-
al numbers for sample projects are shown
in Table 6, where RAD is rapid application
design. These two samples could repre-
sent military and commercial projects
respectively.

The relative productivity difference
between the samples due to these two fac-
tors would be 1.35/.46 = 2.9 or 290%.

The five scaling variables (S) (not
shown) work in a somewhat analogous
manner, but the five factors are summed
to adjust the exponential factor that
applies to the diseconomy of scale. The
total third-order formula is then the fol-
lowing:

Effort = ∏∏ E * P * KSLOCScaling Factor + (∑s/5) (15)

where,

Effort is the effort in pm.

E are the various environmental factors.

P is the productivity factor (which is fur-

ther broken down into a project type, life

cycle, and standard).

KSLOC is the SLOC equivalent in thou-

sands.

S are the five scaling factor adjustments.

ScaleFactor is the default scaling factor

for this project type.

If we use the military productivity factor
from Table 3, military-complex from
Table 4, the military PF adjustment from
Table 5, and the life cycle and standard
adjustments for sample 1 in Table 6, the
equation simplifies to:

Effort = 3.97 * 1.386 * 1.35 *

KSLOC(1.197 + (∑s/5)) (16)

Effort = 7.43 * KSLOC(1.197 + (∑s/5))

Calculating Schedule and Adjusting
for Schedule Deviations
In Cost Xpert, the optimal schedule is dri-
ven by the calculated effort. The schedule
formula is of the form:

Schedule = ∝∝ * Effortß (17)

where,

Schedule is the schedule in calendar

months.

∝∝ is a linear constant.

ß is an exponential constant.

Table 7 shows a couple of sample values.
Accelerating a project from this calcu-

lated schedule results in inefficiencies that
then lower productivity and increase
effort. Cost Xpert handles this schedule
acceleration adjustment to productivity
through a table lookup and interpolation
between points in the table.

Summary and Conclusions
The three model implementations
described in this article represent the
majority of the estimating approaches
available to the estimator today. Our intent
in this article is not to advocate a single
software estimating approach or tool, but
is to expose you, the reader, to the mind-
sets incorporated in the more widely used
approaches available today.u

References
1. Norden, P.V. “Curve Fitting for a

Model of Applied Research and
Development Scheduling.” IBM
Journal of Research and Development
2.3 (July 1958).

2. Wolverton, R.W. “The Cost of
Developing Large-Scale Software.”
IEEE Transactions on Computers
June 1974: 615-636.

3. Boehm, B.W. Software Engineering
Economics. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1981.

4. Herd, J.R., J.N. Postak, We. E. Russell,
and K.R. Stewart. “Software Cost
Estimation Study – Final Technical
Report.” Vol. I. RADC-TR-77-220.
Rockville, MD: Doty Associates, Inc.,
June 1977.

5. Jensen, R.W. “Management Impact of
Software Cost and Schedule.”
CrossTalk July, 1996:6.

6. Jensen, R.W. A Macrolevel Software
Development Cost Estimation Meth-
odology. Proc. of the Fourteenth
Asilomar Conference on Circuits,
Systems and Computers. Pacific
Grove, CA, 17-19 Nov. 1980.

7. Galorath, Inc. SEER-SEM Users
Manual. El Segundo, CA: Galorath
Inc., Mar. 2001.

8. Putnam, L.H. A Macro-Estimating
Methodology for Software Develop-
ment. Proc. of IEEE COMPCON ’76
Fall, Sept. 1976: 138-143.

9. Herd, J.R., J.N. Postak, We. E. Russell,
and K.R. Stewart. “Software Cost
Estimation Study – Final Technical
Report.” Vol. I. RADC-TR-77-220.
Rockville, MD: Doty Associates, Inc.,
June 1977.

10. Software Engineering, Inc. Sage User’s
Manual. Brigham City, UT: Software
Engineering, Inc., 1995.

11. Brooks Jr., F.P. The Mythical Man-
Month. Reading, MA: Addison-
Wesley, 1975.

12. Putnam, Lawrence H., and Ware
Myers. Measures for Excellence.
Englewood Cliffs, NJ: Prentice-Hall,
Inc., 1992: 237

13. Putnam. Measures for Excellence, 234.
14. Boehm B., et al. Software Cost

Estimation With COCOMO II.
Prentice-Hall, 2000.

15. Cost Xpert Group, Inc. Cost Xpert 3.3
Users Manual. San Diego, CA: Cost
Xpert Group, Inc., 2003.

Note
1. This is a good place to point out a

major difference between software and
almost any other manufactured prod-
uct. In other estimating areas, a large
number of products improves produc-
tivity through the ability to spread
costs over a large sample and reduce
learning curve effects. The software
product is but a single production item
that becomes more complex to man-
age and develop as the effective size
increases.

Software Engineering Technology

28 CROSSTALK The Journal of Defense Software Engineering February 2006

Project Type Productivity Factor

(pm/KSLOC)

Military 3.97

Commercial 2.40

Internet 2.51

Table 3: Productivity Factors

Project Type Scaling Factor

Military, Complex 1.197

Military, Average 1.120

Military, Simple 1.054

Commercial 1.054

Table 4: Scaling Factors for Various Project Types

Required Reliability

(E)

Multi-Site

Development (E)

Security

Classification (E)

Net

Productivity

(PFA)

Military Very High 1.26 Nominal 1.00 High 1.10 1.386

Commercial Nominal 1.00 Very High 0.86 Nominal 1.00 0.86

Table 5: Sample Productivity Factor Adjustments

Life Cycle and

Multiplier

Standard and

Multiplier

Net

Productivity

Sample 1 Waterfall 1.01 Military-498 1.34 1.35

Sample 2 RAD 0.91 RAD 0.51 0.46

Project Type ß

Military 3.80 0.378

α

Commerical 2.50 0.3348

Table 7: Sample Schedule Factors

Project Type Productivity Factor

(pm/KSLOC)

Military 3.97

Commercial 2.40

Internet 2.51

Table 3: Productivity Factors

Project Type Scaling Factor

Military, Complex 1.197

Military, Average 1.120

Military, Simple 1.054

Commercial 1.054

Table 4: Scaling Factors for Various Project Types

Required Reliability

(E)

Multi-Site

Development (E)

Security

Classification (E)

Net

Productivity

(PFA)

Military Very High 1.26 Nominal 1.00 High 1.10 1.386

Commercial Nominal 1.00 Very High 0.86 Nominal 1.00 0.86

Table 5: Sample Productivity Factor Adjustments

Life Cycle and

Multiplier

Standard and

Multiplier

Net

Productivity

Sample 1 Waterfall 1.01 Military-498 1.34 1.35

Sample 2 RAD 0.91 RAD 0.51 0.46

Project Type ß

Military 3.80 0.378

α

Commerical 2.50 0.3348

Table 6: Life Cycle and Standard Adjustment Factors

Project Type Productivity Factor

(pm/KSLOC)

Military 3.97

Commercial 2.40

Internet 2.51

Table 3: Productivity Factors

Project Type Scaling Factor

Military, Complex 1.197

Military, Average 1.120

Military, Simple 1.054

Commercial 1.054

Table 4: Scaling Factors for Various Project Types

Required Reliability

(E)

Multi-Site

Development (E)

Security

Classification (E)

Net

Productivity

(PFA)

Military Very High 1.26 Nominal 1.00 High 1.10 1.386

Commercial Nominal 1.00 Very High 0.86 Nominal 1.00 0.86

Table 5: Sample Productivity Factor Adjustments

Life Cycle and

Multiplier

Standard and

Multiplier

Net

Productivity

Sample 1 Waterfall 1.01 Military-498 1.34 1.35

Sample 2 RAD 0.91 RAD 0.51 0.46

Project Type ß

Military 3.80 0.378

α

Commerical 2.50 0.3348

Table 5: Sample Productivity Factor Adjustments

Software Estimating Models:Three Viewpoints

February 2006 www.stsc.hill.af.mil 29

About the Authors

Randall W. Jensen,
Ph.D., is a consultant for
the Software Technology
Support Center, Hill Air
Force Base, with more
than 40 years of practical

experience as a computer professional in
hardware and software development. He
developed the model that underlies the
Sage and the Galorath, Inc. SEER-SEM
software cost and schedule estimating
systems. He retired as chief scientist in
the Software Engineering Division of
Hughes Aircraft Company’s Ground
Systems Group. Jensen founded
Software Engineering, Inc., a software
management-consulting firm in 1980.
Jensen received the International Society
of Parametric Analysts Freiman Award
for Outstanding Contributions to Para-
metric Estimating in 1984. He has pub-
lished several computer-related texts,
including “Software Engineering,” and
numerous software and hardware analy-
sis papers. He has a Bachelor of Science,
a Master of Science, and a doctorate all
in electrical engineering from Utah State
University.

Software Technology Support Center
6022 Fir AVE BLDG 1238
Hill AFB, UT 84056
Phone: (801) 775-5742
Fax: (801) 777-8069
E-mail: randall.jensen@hill.af.mil

Lawrence H. Putnam
Sr. is the founder and
chief executive officer of
Quantitative Software
Management, Inc., a de-
veloper of commercial

software estimating, benchmarking, and
control tools known under the trade-
mark SLIM. He served 26 years on active
duty in the U.S. Army and retired as a
colonel. Putnam has been deeply
involved in the quantitative aspects of
software management for the past 30
years. He is a member of Sigma Xi,
Association for Computing Machinery,
Institute of Electrical and Electronics
Engineers (IEEE), and IEEE Computer
Society. He was presented the Freiman
Award for outstanding work in paramet-
ric modeling by the International Society
of Parametric Analysts. He is the co-
author of five books on software esti-
mating, control, and benchmarking.
Putnam has a Bachelor of Science from
the United States Military Academy and
a Master of Science in physics from the
Naval Postgraduate School.

Quantitative Software
Management, Inc.
2000 Corporate Ridge STE 900
McLean, VA 22102
Phone: (703) 790-0055
Fax: (703) 749-3795
E-mail: larry_putnam_sr@qsm.com

William Roetzheim is
the founder of the Cost
Xpert Group, Inc., a
Jamul-based organization
specializing in software
cost estimation tools,

training, processes, and consulting. He
has 25 years experience in the software
industry, is the author of 15 software
related books, and over 100 technical
articles.

2990 Jamacha RD STE 250
Rancho San Diego, CA 92019
Phone: (619) 917-4917
Fax: (619) 374-7311
E-mail: william@costXpert.com

LETTER TO THE EDITOR

Dear CrossTalk Editor,

In the December 2005 issue, the article “Agile Software
Development for the Entire Project” by Granville Miller,
Microsoft, describes how the agile process in MSF can make the
agile described in the Agile Manifesto <www.agile
manifesto.org> much easier to implement without all of those
difficult changes that many others have experienced. He
describes how these reflect the fine engineering practices at
Microsoft that have led the MSF version of agile to already be
a year late.

It has taken more than 20 years for parts of the American
manufacturing industry to adopt lean thinking. Agile, which has
many parallels to lean manufacturing, will also take a lot of
effort and time. Change is always an effort, and only the dra-
matic benefits of agile make it worthwhile. Efforts by people
like Granville Miller to water down agile by redefining the intent

do not help. Efforts that add more process miss the point;
process is defined by self-managing teams within frameworks.
Decisions are made by these teams working closely with cus-
tomers to maximize benefit and optimize results.

At the start of the agile movement, we were warned that the
larger commercial interests would attempt to water it down to
fit their existing tools. We should expect to see other similar fits
such as from IBM (through RUP in the Eclipse Foundation)
and others. The refinements suggested by Granville Miller do a
disservice to everyone working on agile.

Ken Schwaber
Signatory to the Agile Manifesto

Founder of the Agile Alliance
Co-Author of the Scrum Agile process
ken.schwaber@controlchaos.com

30 CROSSTALK The Journal of Defense Software Engineering February 2006

Departments

BACKTALK

February 2006 www.stsc.hill.af.mil 31

Language is a product of enlightened thinking. As such, one
would think the evolution of language would be an open

and exhilarating endeavor. However, in the early era of lan-
guage, neologism was surprisingly lethargic and proscribed. For
a fascinating insight into early linguistic expansion, I recom-
mend Simon Winchester’s book, “The Professor and the
Madman: A Tale of Murder, Insanity and the Making of the
Oxford English Dictionary.”

In this medieval era, words had to pay their dues and
patiently wait their turn before joining the literary league. Pre-
modern academic prigs banded together to ward off the inva-
sion of the unwashed word. Conservatism was favored over
litheness.

In our post-modern world, the pendulum has swung in the
opposite direction. Sports, musical, political, and urban lingo
constantly alter, shape, and morph proper language. Who
opened the gate for this new era of malleable idiom? Credit
the engineers, scientists, and technologists born out of the sci-
entific explosion impelled by two world wars.

Technical jargon turned to slang and slang made its way
from military, scientific, and technical circles into the general
vernacular. This process has gradually accelerated, reaching
terminal velocity with the advent of the computer and inter-
net. Our rapture, frustration, and superstition with technology
invigorates a desire to name these new experiences, spawning
new language. These new words and phrases are a great source
of humor and intrigue. Here are a few techno-neologisms that
tickle my fancy.

Let’s start with an old favorite, polymorphism: a program-
ming language’s ability to process objects differently depend-
ing on their type or class. From its early days as the object-ori-
ented world’s buzzword of choice, polymorphism has all the
makings of a classic word. Any word that starts with poly
makes you smile. Morph brings a sense of intrigue – imagine
the ability to appear in many forms. Most of our lives are
spent changing form – polymorphism is the basis for the
entire cosmetic industry. Ending with ism gives polymorphism
a sense of permanence and historical significance. Since this is
an old favorite, classify this word as a post-neologism.

How about honeymonkey? This sweet, yet playful, word
emerged from Microsoft’s need to sniff out malicious code.
Its predecessor, the honeypot, sits on the Web as a server,
attracting client-based malicious code. Honeymonkies take a
reverse approach by surfing the net as a client, attracting serv-
er-based malicious code. Makes sense to me. You cruise the
net offering honey and once you get a bite you start screech-
ing like a monkey. Do you think Bill Gate’s wife calls him hon-
eymonkey?

Then there is Ohnosecond, the fraction of time it takes
you to realize you have just goofed up, but cannot reverse your
action. Around since the beginning of time, ohnosecond cred-
its the premature use of the send button for its ascension to
fame. Typically symbolized by putting your foot in your
mouth, I am relieved to have a word that covers the situation:
keeping my rima oris free of toe jam.

What is a Bi-stable Multivibrator? A flip-flop – the techni-
cal kind, not the flip-flops we wear on our feet. The shoe

industry had to steal the term flip-flop from the tech industry
because the underwear industry stole the term thong. To
appease the CrossTalk editors, I will refrain from further
linking of words in this paragraph in any other way.

Gnutella. I love the word Gnutella. Gnutella allows users to
share files in a truly distributed manner. However, it conjures up
so much more: Marlon Brando yelling Gnutella, Jane Fonda
floating in space, Godzilla’s next foe, and a punk rock band. It
will not be long before the number one name for babies will be
Gnutella.

A sophomore favorite is Dag-tag. Dag-tag is an overly elab-
orate signature, quote, or ASCII art following an e-mail mes-
sage. You will have to ask your Australian friends what a dag is.
You can view dags on sheep as they walk away from you. Out
west they are known as dingleberries. In general, undesirable
stuff that is stuck in an inconvenient place is a dag-tag. That
piece of toilet paper dangling from the boss’s backside? Yes,
that’s a dag-tag.

An easy way to complete this article would be to cover all
prefixed words. Words easily named by tacking a technical pre-
fix to them, e.g., e-, cyber-, net-, info- and techno-. To me, that
is cheating. However, there are three technical fields that are
rapidly merging to form an interesting new field. That is the
convergence of biology, information technology, and nan-
otechnology: Bio-Info-Nano. I propose a new prefix for this
technology convergence: Bino-, which rhymes with the city
Reno. I predict we will be drunk with its pervasiveness. We will
create a game called Bino-, dogs will be named after Bino-, and
we will sing about it in pre-school.

Googolplex was a benign scientific term representing the
number 10 raised to the power of one googol, or
(10^(10^100)), which is the number 1 followed by 10^100
zeros. With the massive popularity of a certain search engine,
googolplex now conjures up a new vision: I see a massive cyber
strip mall where you can Google and be Googled to your heart’s
desire.

Have you seen the acronym DSTN on your LCD screen?
Do you know what it stands for? Double-layer Super Twist
Nematic. This was obviously the inspiration for the cants used
to order coffee at Starbucks. Dude, I’ll have a Double-Layer
Super Twist Nematic Latte, pronto.

My favorite technical word is Electrowetting. I am not
kidding. This is a legitimate word and is a promising technolo-
gy for optical switching networks and focusing lasers.
Electrowetting (stop giggling) uses electrical fields to modify
dielectric film between hydrophobic and hydrophilic states to
shape liquid into an optical lens. Wait, there’s more.
Electrowetting (you’re still smiling) is a subset of a mechanical
device called micropumps. This begs the question: Does
micropumping cause eletrowetting or relieve electrowetting? I’ll
let you mull over that.

— Gary A. Petersen
Shim Enterprise, Inc.

gary.petersen@shiminc.com

Tech-Neologism

CrossTalk / 309 SMXG/MXDB
6022 Fir AVE

BLDG 1238

Hill AFB, UT 84056-5820

PRSRT STD

U.S. POSTAGE PAID

Albuquerque, NM

Permit 737

CrossTalk is
co-sponsored by the

following organizations:

	Front Cover
	Table of Contents
	From the Sponsor
	From the Publisher
	A New Twist on Today’s Technology
	DoDAF-Based Information Assurance Architectures
	Applying RAMS Principles to the Development of aSafety-Critical Java Specification
	A Governance Model for Incremental,Concurrent, or Agile Projects
	Project Estimation With Use Case Points

	Software Engineering Technology
	Software Estimating Models: Three Viewpoints

	Coming Events
	Web Sites
	More Online From CrossTalk
	Letter to the Editor
	SSTC Conference Registration
	BackTalk
	Backcover

